
- •[Править]Конструкция
- •[Править]Физические принципы работы
- •6) Классификация [править]По назначению
- •[Править ]По виду топлива
- •Энергии связи и массы ядер
- •Спин ядра и моменты нуклонов
- •Изоспин ядер и нуклонов
- •Электромагнитные моменты нуклонов и ядер
- •9) Устойчивость ядер
- •15) Законы радиоактивного распада ядер
- •17) Вероятности электромагнитных переходов
- •27) Закон ослабления плотности потока нейтронов.
- •28,29,30 Может быть взаимодействие нейтронов с ядрами
- •Свойства нейтрона.
- •32) Нейтронные сечения Геометрическая интерпретация
- •Эффективное сечение
- •37) Релятивистский эффект Доплера
- •[Править]Осколки деления
- •41) [Править]Продукты деления
- •42) Нейтроны деления
- •[Править]Мгновенные нейтроны
- •[Править]Запаздывающие нейтроны
- •[Править]Применение
- •[Править]Размножение на быстрых нейтронах
- •[Править]Гомогенная среда
- •[Править]Гетерогенная среда
- •[Править]Резонансное поглощение нейтронов
- •[Править]Эффективный резонансный интеграл
- •[Править]Гомогенная система
- •[Править]Гетерогенная система
- •[Править]Гомогенный реактор
- •[Править]Гетерогенный реактор
[Править ]По виду топлива
изотопы урана 235, 238, 233 (235U, 238U, 233U)
изотоп плутония 239 (239Pu), также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)
изотоп тория 232 (232Th) (посредством преобразования в 233U)
По степени обогащения:
природный уран
слабо обогащённый уран
высоко обогащённый уран
По химическому составу:
металлический U
UO2 (диоксид урана)
UC (карбид урана) и т. д.
[править
]По виду теплоносителя
H2O (вода, см. Водо-водяной реактор)
Газ, (см. Графито-газовый реактор)
D2O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)
Реактор с органическим теплоносителем
Реактор с жидкометаллическим теплоносителем
Реактор на расплавах солей
Реактор с твердым теплоносителем
[править
]По роду замедлителя
С (графит, см. Графито-газовый реактор, Графито-водный реактор)
H2O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)
D2O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)
Be, BeO
Гидриды металлов
Без замедлителя (см. Реактор на быстрых нейтронах)
[править
]По конструкции
Корпусные реакторы
Канальные реакторы
[править]
По способу генерации пара
Реактор с внешним парогенератором (См. Водо-водяной реактор, ВВЭР)
Кипящий реактор
7) Размеры ядер
Распределение заряда и массы в атомных ядрах исследуется в экспериментах по упругому рассеянию на ядрах альфа-частиц (исторически это первые эксперименты Резерфорда), электронов и протонов. Выяснилось, что как плотность распределения заряда, так и плотность распределения массы ядра приближенно выражаются распределением Ферми:
|
(1.5) |
Величину R называют радиусом ядра. Отметим, что поскольку распределение плотности заряда и массы близки, но не совпадают друг с другом, отличаются также и зарядовый и массовый радиусы.
Энергии связи и массы ядер
Масса стабильных ядер меньше суммы масс входящих в ядро нуклонов, - разность этих величин и определяет энергию связи ядра Eсв (binding energy ):
Eсв(A,Z) = Zmp + (A - Z)mn - MN(A,Z). |
Спин ядра и моменты нуклонов
Основное и возбужденные состояния ядра и других квантовых систем характеризуется набором квантовых чисел, являющихся собственными значениями операторов физических величин. Квантовый оператор F называется собственным оператором, если его действие на волновую функцию системы приводит к той же волновой функции, умноженной на число - собственное значение оператора
Изоспин ядер и нуклонов
Как основное, так и возбужденные состояния ядер - помимо рассмотренных выше энергии, спина и четности – характеризуются квантовыми числами, которые называются изоспином и проекцией изоспина. (В литературе эти квантовые числа обозначаются обычно либо символами T и Tz, либо I и Iz ). Введение этих квантовых чисел связано с тем фактом, что ядерные силы инвариантны относительно замены протонов на нейтроны. Это особенно ярко проявляется в спектрах т.н. ”зеркальных” ядер, т.е. ядер–изобар, у которых число протонов одного равно числу нейтронов другого. Для всех известных пар таких ядер имеет место подобие спектров низших возбужденных состояний: спины и четности низших состояний одинаковы, а энергии возбуждения близки. С точки зрения теории изоспина, нейтрон и протон являются одной и той же частицей – нуклоном с изоспином I = 1/2 – в двух разных состояниях, различающихся проекцией изоспина на выделенную ось (Iz= I3) в пространстве изоспина. Таких проекций для момента I = 1/2 может быть только две: Iz = +1/2 (протон) и Iz = –1/2 (нейтрон). Квантовая теория изоспина построена по аналогии с теорией спина. Однако пространство изоспина не совпадает с обычным координатным пространством.