
- •Глава I
- •§ 1. Характеристика объекта исследования
- •Глава II
- •§ 4. Классификация электрических методов исследования скважин
- •§ 6. Применение методов потенциалов собственной поляризации горных пород в нефтяных и газовых скважинах
- •§ 7. Применение методов потенциалов собственной поляризации горных пород в рудных и угольных скважинах
- •Глава IV
- •§ 8. Физические основы методов кажущегося сопротивления
- •§ 10. Боковое электрическое зондирование
- •§ 11. Методы специальных зондов кажущегося сопротивления
- •§ 12. Микрозондирование,
- •§ 13. Резистивиметрия
- •§ 14. Методы скважинной электроразведки на постоянном (квазипостоянном) токе
- •Глава V'
- •§ 15. Физические основы методов сопротивления заземления и регистрации тока
- •§ 16. Методы сопротивления заземления без автоматической фокусировки тока
- •§ 18. Метод микрозондов сопротивления экранированного заземления с автоматической фокусировкой тока
- •§ 19. Дивергентный метод
- •§ 20. Метод сопротивления
- •§21. Методы регистрации тока
- •§ 22. Методы потенциалов вызванной поляризации горных пород
- •§ 23. Метод поляризационных кривых
- •Глава VI
- •§ 24. Физические основы индукционных .Методов
- •§25. Обычный низкочастотный индукционный метод с продольным датчиком
- •§26. Другие низкочастотные индукционные методы
- •§ 27. Высокочастотные индукционные методы
- •Глава VII
- •§ 28. Физические основы диэлектрических методов и метода радиоволнового просвечивания
- •§30. Волновой диэлектрический метод
- •Глава VIII
- •§ 32. Физические основы методов
- •§ 33. Метод естественного магнитного поля
- •§ 34. Метод магнитной восприимчивости
- •§35. Ядерно-млгнитный метод
- •§36. Радиоактивность
- •§37. Взаимодействие глммл-квлнтов с веществом
- •§38. Взаимодействие нейтронов с веществом
- •§39. Классификация радиоактивных методов
- •Глава X
- •§ 40. Физические основы методов естественного радиоактивного поля
- •§42. Спектральный гамма-метод
- •Глава XI
- •§ 43. Физические основы методов рассеянного гамма-излучения
- •§ 44. Плотностноя гамма-гамма-метод
- •§45. Импульсный гамма-гамма-метод
- •§ 46. Гамм а-гамма-метод по мягкой компоненте
- •§ 47. Селективный гамма-гамма-метод
- •§ 49. Гамма-нейтронныи метод
- •§ 50. Метод индикации радиоактивными изотопами
- •Глава XII
- •§ 5!. Метод плотности надтепловых нейтронов
- •§ 52. Л1етод плотности тепловых нейтронов Физические основы ннм-т
- •§53. Нейтронный гамма-метод
- •§54. Спектрометрический нейтронный гамма-метод
- •§ 55. Л1етод наведенной активности
- •§ 56. Метод индикации элементами с аномальными нейтронными свойствами
- •Глава XIII
- •§57. Физические основы импульсных нейтронных методов
- •§58. Импульсный нейтрон-нейтронный метод по тепловым нейтронам
- •§59. Импульсный нейтронный гамма-метод радиационного захвата
- •§ 60. Другие импульсные нейтронные методы
- •Глава XIV
- •§62. Физические основы термометрических методов
- •§ 63. Метод естественного теплового поля земли (геотермия)
- •Глава XV
- •§ 65. Физические основы акустических методов
- •§ 66. Ультразвуковой метод
- •§67. Низкочастотный широкополосный акустический л1етод
- •§ 68. Метод акустического телевидения
- •§ 71. Газометрия скважин после бурения Физические основы метода
- •§ 72. Л юм и несцентно-битум миологический метод и метод избирательных электродов
- •§ 73. Комплексные геофизические исследования скважин в процессе бурения
- •Глава XVII
- •§ 74. Инклинометрия
- •§75. Кавернометрия и профилеметрия
- •§ 78. Определение характеристик и дефектов обсадных колонн
- •Глава XVIII
- •§ 79. Исследование процесса вытеснения нефти и газа при заводнении пластов
- •§80. Изучение эксплуатационных характеристик пластов
- •§ 81. Определение состава флюидов в стволе скважины
- •§ 82. Изучение технического состояния эксплуатационных и нагнетательных скважин
- •Глава XIX
- •§ 83. Перфорация
- •§ 84. Торпедирование
- •§ 85. Другие виды взрывных работ Воздействие на пласт пороховыми газами
- •§ 86. Отбор образцов пород, проб пластовых флюидов и испытание пластов
- •Глава XX
- •§ 87. Лаборатории
- •§ 89. Подъел!ники
- •§ 90. Блок-балансы
- •§ 91. Кабели
- •§92 Подготовительные работы на базе и на буровой
- •§ 93. Спуск - подъем приборов и кабеля
- •Глава XXII
- •Глава XXIII
- •§ 97. Принципы автоматизации сбора геофизической информации
- •§98. Принципы автоматизированной системы
- •Глава XXIV
- •§99. Особенности производства геофизических работ в скважинах
- •§ 100 Организация геофизических работ в скважинах и порядок их проведения
- •§ 101 Планирование геофизических работ в скважинах
- •Глава XXV
- •§ 102. Основные правила техники безопасности при ведении геофизических работ в скважинах
- •§ 103. Работы электрическими методами
- •§ 105 Прострелочные и взрывные работы
- •§ 107. Охрана окружающей природной среды
Глава XV
АКУСТИЧЕСКИЕ МЕТОДЫ
§ 65. Физические основы акустических методов
Акустические методы исследования разрезов скважин основаны на определении упругих свойств горных пород по данным
о распространении в них упругих волн.
В акустических методах используются упругие волны различных частот I: инфразвуковые с частотами менее 16 Гц, звуковые с диапазоном частот от 16 до 2-104 Гц и ультразвуковые с частотами более 2-104 Гц. Хотя высокочастотные упругие колебания быстро затухают с расстоянием и область их возможного применения ограничена, повышение диапазона частот позволяет добиться высокой разрешающей способности методов определения упругих свойств горных пород. При детальных акустических исследованиях разрезов скважин применяются низкочастотный широкополосный акустический метод при / — 5—20 кГц, ультразвуковой метод при /=10ч-75 кГц с преобладанием ультразвуковых частот, метод акустического телевидения при /=1ч-2 МГц. Другие исследования в скважинах, основанные на регистрации упругих волн в горных породах, объединяются под названием сейсмометрия с к в а ж и н.
В основе акустических методов лежит различие упругих свойств пород, слагающих разрезы скважин. Горные породы в естественном залегании при тех напряжениях, которые возникают при исследовании разрезов скважин ультразвуковым методом, являются практически упругими телами. Если на элементарный объем породы, условно принимаемый за точку, в тс- чспие некоторого времени действует какая-либо сила, то про
исходят деформация частиц породы и их перемещение. Это приводит к возникновению напряжений в слое, окружающем точку возбуждения, т. е. в этом слое возникают изменяющиеся во времени деформации. В результате во всех направлениях от точки приложения возбуждающей силы изменяется первоначальное состояние среды. После того как частица среды совершит колебания около своего первоначального положения, она успокоится.
Процесс последовательного распространения деформации называется упруго й в о л и о й. В однородной среде упругие волны распространяются в радиальном направлении от источника колебаний (точки возбуждения). Геометрическое место точек пространства, в которых упругие колебания среды совершаются синфазно (в одной фазе), называется фронтом волны. В неоднородной среде пути распространения упругих волн и их фронт имеют более сложную картину. Линия, вдоль которой происходит распространение волны, в каждой своей точке образующая прямой угол с фронтом волны в соответствующий момент времени, называется лучом.
Есть два типа волн — продольные (Р) и поперечные (S). Продольная волна вызывается деформацией объема и се распространение представляет собой перемещение зон растяжения и сжатия. Частицы среды при этом совершают колебания около своего первоначального положения в направлении, совпадающем с лучом волны. Поперечная волна связана с деформацией формы, и распространение ее заключается в скольжении одного слоя среды относительно другого. Частицы среды при этом колеблются около своего первоначального положения в направлении, перпендикулярном к направлению распространения волны. Поперечные волны могут возникать только в твердых телах.
Скорость распространения упругой волны по ходу луча зависит от упругих свойств и плотности среды, а также от типа волны. Свойства упругих тел определяются модулем их продольного растяжения и коэффициентом поперечного сокращения.
Модуль продольного растяжения (модуль Юнга) Е равен отношению приложенного напряжения р к вызванному относительному удлинению образца Д/:£=р/Д/.
Коэффициент поперечного сокращения (коэффициент Пуассона) ст является коэффициентом пропорциональности между относительным поперечным сокращением Д/с данного упругого тела и его относительным удлинением Д/: <т=Д/с/Д/.
С
6п'(1+о)(1-2о)
vP =
V
корость распространения продольной упругой волны в породегде бп —плотность породы; в — модуль сдвига; К — модуль всестороннего сжатия.
Скорость распространения поперечной волны
= Л/ 28„(1+о) = Л/'
Для горных пород Е обычно изменяется от 1,5-Ю-1 до 6 Па; коэффициент поперечного сокращения горных пород близок к 0,25. Для горных пород уР/и5= 1,73, т. е. скорость распространения поперечной волны приблизительно в 1,73 раза меньше скорости распространения продольной волны, следовательно, продольная волна приходит к удаленным точкам раньше, чем поперечная.
Упругие свойства горных пород, а значит и скорости распространения упругих волн в них обусловлены их минеральным составом, пористостью и формой норового пространства и, таким образом, тесно связаны с литологическими и петрофнзиче- скими свойствами.
Скорость распространения упругих волн в различных средах в м/с
Воздух 300—500
д. и. дьяконов, 1
ОБЩИЙ КУРС 1
| БИБЛИОТЕКА | 2
_ 3 г-@-^Ит=ь— 31
л и=им-иы=2+-[-±---±А 43
р*=к;с/,/л 77
1с=И^ 87
Г] 87
д. и. дьяконов, 427
ОБЩИЙ КУРС 427
Промывочная жидкость 1500—1700
Глина 1200—2500
Песчаник нецементнрованнын 1500—2500
Песчаник плотный 3000—6000
Известняк 3000—7100
Доломит 5000—7500
Ангидрит, гипс 4500—6500
Каменная соль 4500—5500
Кристаллические породы 4500—6500
Цемент 3500
Сталь 5400
Кроме того, различные породы по-разному ослабляют энергию наблюдаемой волны по мере удаления ее от источника возбуждения упругих волн. Связанные с этой волной колебания захватывают все больший объем породы. В соответствии с этим количество энергии, приходящейся на единицу объема породы, уменьшается. Кроме того, за счет необратимых процессов, связанных с неравновесным теплообменом между фазами сжатия и растяжения и с проявлением вязкости (неидеальной упругости среды), уменьшается энергия волны, а следовательно, и амплитуда колебаний А. Амплитуда колебаний продольной или поперечной волны убывает обратно пропорционально расстоянию от точки наблюдения до места возбуждения. Уменьшение амплитуды колебаний продольной или поперечной волны по мерс удаления точки наблюдения от излучателя зависит от коэффициента поглощения ауз энергии волны на отрезке А/,:
где Ли А2 — амплитуды наблюдаемой волны на расстояниях
/^1 И /_2, А“ 1~,2—].
Коэффициент поглощения энергии волны или, как его часто называют, ослабления или затухания волны выражают в децибелах на 1 м или 1/м, относя величину ослабления амплитуды к единице длины: 1 дБ/м = 8,68 м ‘. Величина ауз зависит от пористости породы, минерального состава ее скелета и цемента, геометрии пор, свойств жидкости, насыщающей поры, частоты упругих колебаний и типа регистрируемых волн.
При акустических исследованиях горных пород измеряют кинематические и динамические характеристики продольных и поперечных волн. Кинематические характеристики определяют скорость распространения упругих волн в породах: 1) время распространения упругих колебаний между приемником и ближним или дальним излучателем—Т] и г2; 2) интервальное время распространения упругой волны Дх=Т2—Т|. Динамические характеристики связаны с поглощающими свойствами исследуемой среды: 1) относительными амплитудами продольных и поперечных колебаний от ближнего и дальнего излучателей— Л,р, А2р и А2ь\ 2) коэффициентами поглощения — «узр и цузв соответственно для продольных и поперечных волн.