- •Основные понятия криптографии. Блочные и поточные шифры. Понятие криптосистемы. Ручные и машинные шифры. Основные требования к шифрам.
- •Методы криптоанализа. Понятие криптоатаки. Классификация криптоатак. Классификация методов анализа криптографических алгоритмов.
- •Основные свойства криптосистемы. Классификация атак на криптосистему с секретным ключом.
- •Традиционная криптография и криптография с открытым ключом: область использования, достоинства и недостатки. Требования, предьявляемые к алгоритмам шифрованияя.
- •Поточные и блочные шифры. Принципы блочного шифрования. Шифр Файстеля.
- •7. Режимы работы блочных шифров. Область применения. Достоинства и недостатки.
- •Режим электронной книги:
- •Режим обратной связи по шифротексту.
- •8. Принципы построения криптографических алгоритмов. Криптографическая стойкость шифров. Имитация и подмена сообщения. Характеристика имитостойкости шифров
- •9. Стандарт шифрования данных (des). Шифрование и дешифрование des.Достоинства и недостатки.
- •10. Стандарт aes. (Требования к стандарту, финалисты конкурса, сравнение алгоритмов rc6, Twofish, Rijndael,Serpent, Mars).
- •Гаммирование с обратной связью.
- •12. Потоковые шифры на основе рслос. Генератор Геффе, «старт-стоп» Бета-Пайпера. Пороговый генератор.
- •13. Распределение секретных ключей. Подход на основе алгоритма традиционного шифрования. Продолжительность использования сеансового ключа.
- •14. Ключевая информация: сеансовый, секретный, мастер-ключ, открытый и закрытый ключ. Требования к качеству ключевой информации и источнику ключей.
- •15. Распределение секретных ключей. Обмен ключами по Диффи-Хельмана.
- •16. Криптосистемы rsa и Эль-Гамаля.
- •17. Криптографические функции аутентификации.
- •18. Сертификаты открытых ключей. Распределение сертификатов открытых ключей.
- •20. Электронная подпись. Подход rsa и dss. Гост 34.10-2001 «Информационная технология. Криптографическая защита информации. Процессы формирования и проверки и электронной цифровой подписи.
- •21. Фз №63 «Об электронной подписи»:
- •22. Взаимосвязь между протоколами аутентификации и цифровой подписи.
- •23. Распределение сеансовых ключей по протоколу Kerberos.
- •Формальное описание
- •24. Простой и защищённый протокол аутентификации (Kerberos).
- •26. Сравнение алгоритмов хеширования: гост 34.11 – 94, sha-3, ripemd-160, md5.
- •27. Код аутентичности сообщения: требования, область применения, методы получения кода аутентичности (имитовставки).
- •28. Линейные конгруэнтные генераторы. Регистры с обратной линейной связью. Линейная сложность. Корреляционная стойкость.
- •29. Криптография в стандарте gsm. Алгоритм аутентификации а8 и алгоритм генерации ключа шифрования а3.
- •30. Поточный алгоритм a5/X
- •31. Методы получения случайных и псевдослучайных последовательностей.
Поточные и блочные шифры. Принципы блочного шифрования. Шифр Файстеля.
Поточными называются шифры, в которых поток цифровых данных шифруется последовательно бит за битом или байт за байтом.
Высокая скорость работы поточных шифров определяет область их использования – закрытые данных, требующих оперативной доставки потребителю, например, аудио- или видеоинформация
Блочными называются шифры, в которых логической единицей шифрования является некоторый блок открытого текста, после преобразования которого получается блок шифрованного текста такой же длины.
М – сообщение, С – зашифрованное сообщение, К – ключ шифрования, Ек – функция шифрования с ключом к, Dk – функция дешифрования с ключом к, n – кол-во бит в блоке, обычно 64 бита
Процедура зашифрования С= Ek(M)Процедура расшифрования М= Dk(С)Dk(Ek(M))= M
Шифр Файстеля. Шифрование
Рассмотрим случай, когда мы хотим зашифровать некоторую информацию, представленную в двоичном виде в компьютерной памяти (например, файл) или электронике, как последовательность нулей и единиц.
Вся информация разбивается на блоки фиксированной длины. В случае, если длина входного блока меньше, чем размер, который шифруется заданным алгоритмом, то блок удлиняется каким-либо способом. Как правило длина блока является степенью двойки, например: 64 бита, 128 бит. Далее будем рассматривать операции происходящие только с одним блоком, так как с другими в процессе шифрования выполняются те же самые операции.
Выбранный блок делится на два равных подблока — «левый» (L0) и «правый» (R0).
«Левый подблок» L0 видоизменяется функцией F в зависимости от раундового ключа К0, после чего он складывается по модулю 2 с «правым подблоком» .
Результат сложения присваивается новому левому подблоку L1, который будет половиной входных данных для следующего раунда, а «левый подблок» Б присваивается без изменений новому правому подблоку R1 , который будет другой половиной.
После чего операция повторяется N-1 раз, при этом при переходе от одного этапа к другому меняются раундовые ключи ( К0 на К1 и т. д.) по какому-либо математическому правилу, где N — количество раундов в заданном алгоритме.
Расшифрование
Расшифровка информации происходит так же, как и шифрование, с тем лишь исключением, что ключи идут в обратном порядке, то есть не от первого к N-ному, а от N-го к первому.
7. Режимы работы блочных шифров. Область применения. Достоинства и недостатки.
Блочными называются шифры, в которых логической единицей шифрования является некоторый блок открытого текста, после преобразования которого получается блок шифрованного текста такой же длины.
Сам по себе блочный шифр позволяет шифровать только одиночные блоки данных предопределенной длины. Если длина сообщения меньше длины блока, то оно дополняется до нужной длины. Однако, если длина сообщения больше, возникает необходимость его разделения на блоки. При этом существуют несколько способов шифрования таких сообщений, называемые режимами работы блочного шифра.
Режимы работы блочных шифров:
