Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
420.56 Кб
Скачать

49. Участки хромосомы

Центромера (первичная перетяжка)- это место соединения двух хроматид; к центромере присоединяются нити веретена деления.

По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на: равноплечие (метацентрические); неравноплечие (субметацентрические); палочковидные (акроцентрические) – имеется только одно плечо.

Вторичная перетяжка – ядрышковый организатор, содержит гены рРНК, имеется у одной – двух хромосом в геноме.

Теломеры – концевые участки хромосом, содержащие до 10 тысяч пар нуклеотидов с повторяющейся последовательностью ТТАГГГ. Теломеры не содержат генов, они защищают концы хромосом от действия нуклеаз – ферментов, разрушающих ДНК; обеспечивают прикрепление концов хромосом изнутри к ядерной оболочке; защищают гены от концевой недорепликации. 2 период - предметотичный G2 - передача генов через хромосомы, которая происходит 4 стадии. 1 стадия - профаза -в ядре начинают выделяться нити хроматина - будущие хромосомы. Растворяется ядрышко, разрушается оболочка ядра и обнаруживается, что хромосомы двойные. Хромосомы связываются с волокнами. К концу профазы сперализированы и четко видны в делящейся клетке. Во 2-ой стадии - метафазе, хромосомы в сперализированном состоянии располагаются по экватору клетки, но еще связанные с особыми участками хромосом - центромерами ( повреждение ценромер влечет за собой нарушение хода митоза). 3 стадия митоза, носит название анафаза.  В этой стадии происходит расхождение хромосом к полюсам. К каждому полюсу отходят одинаковые наборы хромосом. 4 стадия - телофаза -завершающая. Хромосомы частично раскручиваются, вновь появляются ядрышки и ядерная оболочка. За делением ядра (канитомия) происходит деление клеточного тела (цитомия), у животных клеток путем перетяжки. В интерфазном ядре в S периоде происходит синтез ДНК, а в предмитотичном и постомитотичном периодах синтезируются белки и другие соединения. Благодаря редупликации (делению) хромосом при митозе в интерфазе сохраняется их двойное число (диплоидное), Митоз обеспечивает сохранение  диплоидного числа хромосом во всех соматичных  и еще не созревших клетках.

50. Эндомитоз (от Эндо... и Митоз   удвоение числа хромосом в ядрах клеток многих растительных и некоторых животных организмов. При Э., в отличие от митоза, не разрушаются ядерная оболочка и ядрышко, не образуется веретено деления клетки и не происходит реорганизация цитоплазмы, однако, как и при митозе, хромосомы проходят цикл спирализации и деспирализации. Повторные Э. приводят к возникновению гигантских полиплоидных (см. Полиплоидия) ядер, отчего в клетке увеличивается содержание дезоксирибонуклеиновой кислоты (ДНК). Э. называют также процесс многократного удвоения нуклеопротеидных нитей — хромонем, составляющих основу хромосом, без увеличения числа последних; в результате образуются гигантские (политенные) хромосомы, что также связано со значительным увеличением в ядрах количества ДНК.

Политения

наличие в ядре некоторых соматических клеток гигантских многонитчатых (политенных) хромосом, превышающих в сотни раз обычные. П. приводит к значительному увеличению плоидности ядер (до 32768 n у хирономуса). П. впервые описана француским цитологом Э. Бальбиани в 1881. Политенные хромосомы обнаруживаются в клетках личинок ряда двукрылых (хирономус, дрозофила), у простейших и в некоторых клетках растений. П. — результат многократных репликаций хромосом без последующего деления клетки или её ядра. Для гигантских хромосом характерна специфичность расположения дисков, что позволяет составлять Цитологические карты хромосом и изучать функциональную активность их отдельных участков. 51. Полиплоидизация может быть двух типов: митртическая к мейотическая. Митотическая полиплоидизация происходит в соматической ткани и сразу приводит к возникновению клетки с удвоенным набором хромосом. При мейотической полиплоидиза-ции имеет место блока да движения хромосом в первом или во-втором делении мейоза, что приводит к образованию половых клеток с нередуцированным числом хромосом. Соединение двух таких гамет дает зиготу с удвоенным числом хромосом, из которой развивается тетраплоидный организм. Однако гораздо чаще нередуцированные гаметы сливаются в процессе оплодотворения с нормальными гаплоидными, давая начало триплоид-ному организму. 

Наличие спонтанной полиплоидизации в онтогенезе культур сахаромицетов и других родов дрожжевых грибов подтверждается не только цитологическими методами исследования. На основании тетрадного анализа гибридов Saccharomycodes ludwigii противоположного типа агглютинации [ 601 высказано предположение, что превращение диплоидных вегетатичных клеток в тетраплоидные осуществляется путем внутриклеточной самодиплоидиэации. 

В естественных условиях полиплоидизация происходит под. Этими факторами могут быть крайние температуры, особенно низкие, резкие температурные скачки, различные, механические повреждения ткани растения или химические воздействия. 

Действительно, при полиплоидизации самонесовместимых растений зачастую происходит нарушение самонесовместимости. Полиплоиаизация хромосомного набора вида приводит не только к увеличению дозы соответствующего гена, что само по себе дает значительный фенотипический эффект и может иметь непосредственное адаптивное значение, но при дальнейших изменениях генов в результате мутагенеза полиплоидизация приводит к созданию новой генетической системы.

52. Размножение – универсальное свойство всех живых организмов, способность воспроизводить себе подобных. С его помощью происходит сохранение во времени видов и жизни в целом. Жизнь клеток, намного короче жизни самого организма, поэтому его существование поддерживается только за счет размножения клеток. Различают два способа размножения – бесполое и половое. При бесполом размножении главным клеточным механизмом, обеспечивающим увеличение числа клеток, является митоз. Родителем является одна особь. Потомство представляет собой точную генетическую копию родительского материала. 53. Размножение — присущее всем живым организмам свойство воспроизведения себе подобных, обеспечивающее непрерывность и преемственность жизни.HYPERLINK http://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%BA%D1%80%D0%B5%D0%B0%D1%86%D0%B8%D1%8F Для организмов, обладающих клеточным строением, в основе всех форм размножения лежит деление клетки. Разные способы размножения подразделяются на три основных типа: бесполое, вегетативное и половое.

Бесполое размножение

Бесполое размножение — форма размножения, не связанная с обменом генетической информацией между особями — половым процессом.

Бесполое размножение является древнейшим и самым простым способом размножения и широко распространено у одноклеточных организмов (бактерии, сине-зелёные водоросли, хлореллы, амёбы, инфузории). Этот способ имеет свои преимущества: в нём отсутствует необходимость поиска партнёра, а полезные наследственные изменения сохраняются практически навсегда. Однако при таком способе размножения изменчивость, необходимая для естественного отбора, достигается только за счёт случайных мутаций и потому осуществляется очень медленно.

Половое размножение

Половое размножение сопряжено с половым процессом (слиянием клеток), а также, в каноническом случае, с фактом существования двух взаимодополняющих половых категорий (организмов мужского пола и организмов женского пола).

При половом размножении происходит образование гамет, или половых клеток. Эти клетки обладают гаплоидным (одинарным) набором хромосом. Животным свойствен двойной набор хромосом в обычных (соматических) клетках, поэтому гаметообразование у животных происходит в процессе мейоза. У многих водорослей и всех высших растений гаметы развиваются в гаметофите, уже обладающим одинарным набором хромосом, и получаются простым митотическим делением.

По сходству-различию возникающих гамет между собой выделяют несколько типов гаметообразования:

- изогамия — гаметы одинакового размера и строения, со жгутиками

- анизогамия — гаметы различного размера, но сходного строения, со жгутиками

- оогамия — гаметы различного размера и строения. Мелкие, имеющие жгутики мужские гаметы, называются сперматозоидами, а крупные, не имеющие жгутиков женские гаметы — яйцеклетками.

При слиянии двух гамет (в случае оогамии обязательно слияние разнотипных гамет) образуется зигота, обладающая теперь диплоидным (двойным) набором хромосом. Из зиготы развивается дочерний организм, клетки которого содержат генетическую информацию от обеих родительских особей.

Гермафродитизм

Животное, имеющее и мужские, и женские гонады, называется гермафродитом. Гермафродитизм широко распространён среди низших животных и в меньшей степени у высших. Аналогичный признак у растений называется однодомностью (в отличие от двудомности) и сопряжен с общей эволюционной продвинутостью вида в меньшей степени, чем у животных.

Партеногенез и апомиксис

Партеногенез — это особый вид полового размножения, при котором новый организм развивается из неоплодотворенной яйцеклетки, таким образом обмена генетической информацией не происходит, как и при бесполом размножении. Аналогичный процесс у растений называется апомиксис.

Эволюция размножения

Эволюция размножения шла, как правило, в направлении от бесполых форм к половым, от изогамии к анизогамии, от участия всех клеток в размножении к разделению клеток на соматические и половые, от наружного оплодотворения к внутреннему с внутриутробным развитием и заботой о потомстве.

Темп размножения, численность потомства, частота смены поколений наряду с другими факторами определяют скорость приспособления вида к условиям среды. Например, высокие темпы размножения и частая смена поколений позволяют насекомым в короткий срок вырабатывать устойчивость к ядохимикатам. В эволюции позвоночных — от рыб до теплокровных — наблюдается тенденция к уменьшению численности потомства и увеличению его выживаемости. 54. Бесполое размножение. У одноклеточных организмов выделяют следующие формы бесполого размножения: деление, эндогонию, шизогонию и почкование, спорообразование.

Деление характерно для амебы, инфузории, жгутиковые. Сначала происходит митотическое деление ядра, затем цитоплазма делится пополам все более углубляющейся перетяжкой. При этом дочерние клетки получают примерно одинаковое количество цитоплазмы и органоидов.

Эндогония (внутреннее почкование) характерно для токсоплазмы. При образовании двух дочерних особей материнская дает лишь двух потомков. Но может быть внутреннее множественное почкование, что приведет к шизогонии.

Встречается у споровиков (малярийного плазмодия) и др. Происходит многократное деление ядра без цитокинеза. Из одной клетки образуется очень много дочерних.

Почкование (у бактерий, дрожжевых грибов и др.). При этом на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро (нуклеоид). Почка растет, достигает размеров материнской особи, а затем отделяется от нее.

Спорообразование (у высших споровых растений: мхов, папоротников, плаунов, хвощей, водорослей). Дочерний организм развивается из специализированных клеток – спор, содержащих гаплоидный набор хромосом.

3. Вегетативная форма размножения

Характерна для многоклеточных организмов. При этом новый организм образуется из группы клеток, отделяющихся от материнского организма. Растения размножаются клубнями, корневищами, луковицами, корнеклубнями, корнеплодами, корневой порослью, отводками, черенками, выводковыми почками, листьями. У животных вегетативное размножение встречается у самых низкоорганизованных форм. Ресничные черви делятся на две части, и в каждой из них восстанавливаются недостающие органы за счет неупорядоченного деления клеток. Кольчатые черви могут восстанавливать целый организм из одного членика. Этот вид деления лежит в основе регенерации – восстановления утраченных тканей и частей тела (у кольчатых червей, ящериц, саламандр). 55. Половое размножение встречается в основном у высших организмов.

При половом размножении потомство генетически отличается от своих родителей, так как между родителями происходит обмен генетической информацией.

Основой полового размножения является мейоз. Родителями являются две особи – мужская и женская, они вырабатывают разные половые клетки.

Половое размножение осуществляется через гаметы – половые клетки, имеющие гаплоидный набор хромосом и вырабатывающиеся в родительских организмах. Слияние родительских клеток приводит к образованию зиготы, из которой в дальнейшем образуется организм-потомок. Половые клетки образуются в гонадах– половых железах.

Процесс образования половых клеток называется гаметогенезом.

Если мужские и женские гаметы образуются в организме одной особи, то ее называют гермафродитной.

Виды полового размножения

1. При конъюгации специальные половые клетки (половые особи) не образуются. При этом имеются два ядра – макро– и микронуклеус. При этом микронуклеус сначала делится митотически. Из него формируются стационарное и мигрирующее ядра, имеющие гаплоидный набор хромосом. Затем две клетки сближаются, между ними обра-зуется протоплазматический мостик. По нему происходит перемещение в цитоплазму партнера мигрирующего ядра, которое затем сливается со стационарным. Формируются обычные микро– и макронуклеусы, клетки расходятся. При этом процессе не происходит увеличения количества особей, а происходит обмен наследственной информацией.

2. При копуляции (у простейших) происходят образование половых элементов и их попарное слияние. При этом две особи приобретают половые различия и полностью сливаются, образуя зиготу.

Различия между гаметами в процессе эволюции

Изогамия, когда половые клетки еще не имеют диф-ференцировки. При дальнейшем усложнении процесса возникает анизогамия: мужские и женские гаметы различаются, а количественно (у хламидомонад). Наконец, у водоросли вольвокса большая гамета становится неподвижной и самой крупной из всех гамет. Гиногенез. Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония. Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм.

56. Партеногенез – дочерние организмы развиваются из неоплодотворенных яйцеклеток.

Значение партеногенеза:

1) размножение возможно при редких контактах разнополых особей;

2) резко возрастает численность популяции;

3) встречается в популяциях с высокой смертностью в течение одного сезона.

Виды партеногенеза:

1) облигатный (обязательный) партеногенез;

2) циклический (сезонный) партеногенез;

3) факультативный (необязательный) партеногенез. Выделяют также естественный и искусственный

партеногенез.

57. ЧЕРЕДОВАНИЕ ПОКОЛЕНИЙ, смена поколений в жизненном цикле организмов. При этом поколения (генерации) отличаются способами размножения. У некоторых простейших (напр., у фораминифер) поколение, размножающееся с помощью гамет, сменяется поколением, размножающимся неполовыми клетками. У оболочников и кишечнополостных одиночные свободноплавающие медузы представляют собой половое поколение, а полипы (сидячие или колониальные формы) – бесполое поколение. У растений чередование поколений выражается сменой в цикле развития гаплоидного – полового поколения, или гаметофита, и диплоидного – бесполого, или спорофита. На гаметофите развиваются половые органы, образующие гаметы; на спорофите – органы бесполого размножения (спорангии или зооспорангии), которые в результате мейоза образуют гаплоидные споры, дающие новое половое поколение. У разных растений в цикле развития преобладает либо половое, либо бесполое поколение. При преобладании полового поколения (у мхов) спорофит, или спорогон, развивается на зелёном растении (гаметофите) в виде коробочки со спорами. При преобладании бесполого поколения (у папоротников, плаунов, хвощей, голосеменных) спорофит представлен зелёным растением, на котором развиваются спорангии, а гаметофит – слабо развитым заростком, растущим отдельно или развивающимся на спорофите. Гаметофит — гаплоидная многоклеточная фаза в жизненном цикле растений и водорослей, развивающаяся из спор и производящая половые клетки, или гаметы.

Развивается из гаплоидных спор. На гаметофите в специальных органах гаметангиях развиваются половые клетки, или гаметы. Гаметангии, производящие мужские гаметы, называются антеридии, а гаметангии, производящие женские гаметы — архегонии. Оплодотворение женских гамет (яйцеклеток)у наземных растений, как правило, происходит в архегонии, после чего из оплодотворенной яйцеклетки, или зиготы развивается диплоидный спорофит, который первое время зависит от гаметофита. У большинства многоклеточных водорослей оплодотворение происходит в воде (изогамия, гетерогами и оогамия) и образовавшийся в результате оплодотворения спорофит не зависит от гаметофита. В разных группах высших растений и водорослей гаметофит развит в различной степени. У одних он существует непродолжительное время (папоротники), у других преобладает в течение всей жизни (мхи). Развивается из оплодотворенной яйцеклетки, или зиготы. На спорофите в специальных органах — спорангиях — в результате мейоза развиваются гаплоидные споры. У многих растений (разноспоровые плауны и разноспоровые папоротники, а также голосеменные и цветковые) спорангии делятся на два типа: макро- и микроспорангии. Макроспорангии производят макроспоры, а микроспорангии — микроспоры. Из макроспор развиваются женские гаметофиты, а из микроспор — мужские. Спорофит — диплоидная многоклеточная фаза в жизненном цикле растений и водорослей, развивающаяся из оплодотворенной яйцеклетки, или зиготы и производящая споры.

58. Половой диморфизм— анатомические различия между самцами и самками одного и того же биологического вида, не считая половых органов. Половой диморфизм может проявляться в различных физических признаках, например:

- Размер. У млекопитающих и многих видов птиц самцы более крупные и тяжёлые, чем самки. У земноводных и членистоногих самки, как правило, крупнее самцов.

- Волосяной покров. Борода у человека, грива у львов или бабуинов.

- Окраска. Цвет оперения у птиц, особенно у утиных.

- Кожа. Характерные наросты или дополнительные образования, такие как рога у оленевых, гребешок у петухов.

- Зубы. Бивни у самцов индийского слона, более крупные клыки у самцов моржей и кабанов.

Некоторые животные, прежде всего рыбы демонстрируют половой диморфизм только во время спаривания. Согласно одной из теорий, половой диморфизм выражен тем больше, чем различнее являются вклады обоих полов в уход за потомством. Также он является показателем уровня полигамии.

Половой диморфизм — явление общебиологическое, широко распространенное среди раздельнополых форм животных и растений. В некоторых случаях половой диморфизм проявляется в развитии таких признаков, которые явно вредны для их обладателей и снижают их жизнеспособность. Таковы, например, украшения и яркая окраска самцов у многих птиц, длинные хвостовые перья самца райской птицы, птицы-лиры, мешающие полету. Громкие крики и пение, резкие запахи самцов или самок также могут привлечь внимание хищников и ставят их в опасное положение. Развитие таких признаков казалось необъяснимым с позиций естественного отбора. Для их объяснения в 1871 г. Дарвином была предложена теория полового отбора.[1] Она вызывала споры еще во времена Дарвина. Неоднократно высказывалось мнение, что это самое слабое место дарвиновского учения.[

59. Мейоз (или редукционное деление клетки) — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

- Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

- Фаза лептотены или лептонемы — конденсация ДНК с образованием хромосом в виде тонких нитей.

- Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

- Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

- Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

- Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; гомологичные хромосомы остаются соединёнными между собой.

- Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.

- Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

- Телофаза I — хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

- Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.

- Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

- Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.

- Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Отличия

Шаг 1:

И в процессе митоза, и в процессе мейоза происходит образование митотического веретена, расхождение хромосом, деление клетки.

Шаг 2:

Процесс митоза включает в себя одно деление, и в результате образуются 2 дочерние клетки, а процесс мейоза – два деления, в результате образуются 4 дочерние клетки.

Шаг 3:

Количество ДНК в результате мейоза уменьшается в 4 раза, в результате митоза – в 2 раза.

Шаг 4:

Хромосомный набор клетки в результате митоза остаётся диплоидным, в результате мейоза из диплоидного становится гаплоидным.

Шаг 5:

Наконец, только в процессе мейоза происходит кроссинговер. 60. Кроссинговер- перекрест, взаимный обмен участками парных хромосом, происходящий в результате разрыва и соединения в новом порядке их нитей — хроматид; приводит к перераспределению (рекомбинации) сцепленных Генов. К. — важнейший механизм, обеспечивающий комбинаторную изменчивость, а следовательно, — один из главных факторов эволюции. К., как правило, имеет место в профазе первого деления половых клеток, когда их хромосомы представлены четырьмя нитями. В месте перекреста удаётся цитологически обнаружить характерную фигуру перекрещенных хромосом — хиазму. Результат К. можно выявить по новому сочетанию сцепленных генов (если аллели гомологичных хромосом, участвовавших в К., были гетерозиготны). В ходе мейоза осуществляются два механизма рекомбинации генетического материала.

1. Непостоянный (кроссинговер) представляет собой обмен гомологичными участками между хромосомами. Происходит в профазе I на стадии пахитены. Результат – рекомбинация аллельных генов.

2. Постоянный – случайное и независимое расхождение гомологичных хромосом в анафазе I мейо-за. В результате гаметы получают разное число хромосом отцовского и материнского происхождения.

61. Воспроизведение — это способность организмов образовывать себе подобных. Воспроизведение является одним из важнейших свойств жизни и возможно благодаря общей способности организмов производить потомство. Однако не всегда непосредственные потомки подобны родительским особям. Например, из спор папоротника вырастает многочисленное потомство, представленное заростками, не похожими на материнское спороносное растение. На заростке, в свою очередь, возникает непохожее на него растение — спорофит. Такое явление получило название чередование поколений.

62. Половой процесс, или оплодотворение, или амфимиксис— процесс слияния гаплоидных половых клеток, или гамет, приводящий к образованию диплоидной клетки зиготы. Не следует смешивать это понятие с половым актом (встречей половых партнёров у многоклеточных животных).

Половой процесс закономерно встречается в жизненном цикле всех организмов, у которых отмечен мейоз. Мейоз приводит к уменьшению числа хромосом в два раза (переход от диплоидного состояния к гаплоидному), половой процесс — к восстановлению числа хромосом (переход от гаплоидного состояния к диплоидному).

Различают несколько форм полового процесса:

- изогамия — гаметы не отличаются друг от друга по размерам, подвижны, жгутиковые или амебоидные;

- анизогамия (Гетерогамия) — гаметы отличаются друг от друга по размерам, но оба типа гамет (макрогаметы и микрогаметы) подвижны и имеют жгутики;

- оогамия — одна из гамет (яйцеклетка) значительно крупнее другой, неподвижна, деления мейоза, приводящие к её образованию, резко асимметричны (вместо четырёх клеток формируется одна яйцеклетка и два абортивных «полярных тельца»); другая (спермий, или сперматозоид) подвижна, обычно жгутиковая или амебоидная.

Биологическое значение амфимиксиса непосредственно связан с биологической сущностью определенных сторон процесса оплодотворения. Дарвин, открывший «великий закон природы», говорил о прогрессивном значении появления полового процесса в истории органического мира, рассматривая при этом перекрёстное опыление как источник обогащения наследственности. Благодаря бипариентальному наследованию (материнское — от яйцеклетки и отцовское — от спермия) в результате амфимиксиса получаются более жизнеспособные организмы, обладающие более широким спектром изменчивости по сравнению с апомиктичными растениями.

63. Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяют овогенез и сперматогенез соответственно. Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосемянных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных.

У многоклеточных животных Г. происходит в специальных органах — половых железах, или гонадах (яичниках, семенниках, гермафродитных половых железах), и складывается из трёх основных этапов: 1) размножение первичных половых клеток — гаметогониев (сперматогониев и оогониев) путём ряда последовательных митозов, 2) рост и созревание этих клеток, называют теперь гаметоцитами (сперматоцитами и ооцитами), которые, как и гаметогонии, обладают полным (большей частью диплоидным) набором хромосом. В это время совершается основное событие Г. у животных — деление гаметоцитов путём мейоза, приводящее к редукции (уменьшению вдвое) числа хромосом в этих клетках и превращению их в гаплоидные клетки (см. Гаплоид) сперматиды и оотиды; 3) формирование сперматозоидов (либо спермиев) и яйцеклеток; при этом яйцеклетки одеваются рядом зародышевых оболочек, а сперматозоиды приобретают жгутики, обеспечивающие их подвижность. У самок многих видов животных мейоз и формирование яйца завершаются после проникновения сперматозоида в цитоплазму ооцита, но до слияния ядер сперматозоида и яйцеклетки.

У растений Г. отделен от мейоза и начинается в гаплоидных клетках — в спорах (у высших растений — микроспоры и мегаспоры). Из спор развивается половое поколение растения — гаплоидный гаметофит, в половых органах которого — гаметангиях (мужских — антеридиях, женских — архегониях) путём митозов происходит Г. Исключение составляют голосеменные и покрытосеменные растения, у которых сперматогенез идёт непосредственно в прорастающей микроспоре — пыльцевой клетке. У всех низших и высших споровых растений Г. в антеридиях — это многократное деление клеток, в результате которого образуется большое число мелких подвижных сперматозоидов. Г. в архегониях — формирование одной, двух или нескольких яйцеклеток. У голосеменных и покрытосеменных растений мужской Г. состоит из деления (путём митоза) ядра пыльцевой клетки на генеративное и вегетативное и дальнейшего деления (также путём митоза) генеративного ядра на два спермия. Это деление происходит в прорастающей пыльцевой трубке. Женский Г. у покрытосеменных растений — обособление путём митоза одной яйцеклетки внутри 8-ядерного зародышевого мешка. Основное различие Г. у животных и растений: у животных он совмещает в себе превращение клеток из диплоидных в гаплоидные и формирование гаплоидных гамет; у растений Г. сводится к формированию гамет из гаплоидных клеток.

64. Гаметы (от греч. γᾰμετή — жена, γᾰμέτης — муж) — репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы.

У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез.

Морфология гамет и типы гаметогамии

Морфология гамет различных видов достаточно разнообразна, при этом продуцируемые гаметы могут отличаться как по хромосомному набору (при гетерогаметности вида), величине и подвижности (способности к самостоятельному передвижению), при этом гаметный диморфизм у различных видов варьирует в широких пределах — от отсутствия диморфизма в виде изогамии до своего крайнего проявления в форме оогамии.

Изогамия

Если сливающиеся гаметы морфологически не отличаются друг от друга величиной, строением и хромосомным набором, то их называют изогаметами, или бесполыми гаметами. Такие гаметы подвижны, могут нести жгутики или быть амёбовидными. Изогамия типична для многих водорослей.

Анизогамия (гетерогамия)

Гаметы, способные к слиянию, различаются по размерам, подвижные микрогаметы несут жгутики, макрогаметы могут быть как подвижны (многие водоросли), так и неподвижны (лишённые жгутиков макрогаметы многих протистов).

Оогамия

Способные к слиянию гаметы одного биологического вида резко различаются по размерам и подвижности на два типа: малые подвижные мужские гаметы — сперматозоиды — и крупные неподвижные женские гаметы — яйцеклетки. Различие размера гамет обусловлено тем, что яйцеклетки содержат запас питательных веществ, достаточный для обеспечения нескольких первых делений зиготы при её развитии в зародыш.

Мужские гаметы — сперматозоиды — животных и многих растений подвижны и обычно несут один или несколько жгутиков, исключением являются лишённные жгутиков мужские гаметы семенных растений — спермии, которые доставляются к яйцеклетке при прорастании пыльцевой трубки, а также безжгутиковые сперматозоиды (спермии) нематод и членистоногих.

Хотя сперматозоиды несут митохондрии, при оогамии от мужской гаметы к зиготе переходит только ядерная ДНК, митохондриальная ДНК (а в случае растений и пластидная ДНК) обычно наследуется зиготой только от яйцеклетки.

65. Эпигенез , учение о зародышевом развитии организмов как процессе последовательных новообразований в противовес признанию существования в половых клетках и зачатках зародыша изначального многообразия структур Борьба между сторонниками Э. и преформационных представлений протекала на всем протяжении истории биологии. Одни ученые (Аристотель, У. Гарвей, И. Блуменбах, Х. Дриш и др.) отстаивали Э. с идеалистических, виталистических позиций, другие (Р. Декарт, П. Мопертюи, Ж. Бюффон, К. Ф. Вольф и др.) — с механико-материалистических. Смена господствующих в ту или иную эпоху концепций развития определялась уровнем знаний об оплодотворении и эмбриогенезе организмов. Победа Э. в середине 18 в. (благодаря в основным трудам К. Ф. Вольфа) способствовала развитию эмбриологии. Успехи цитологии в 70—80-х гг. 19 в. привели к появлению многочисленных теорий наследственности, опровергавших Э. Борьба между концепциями Э. и преформизма была особенно острой в механике развития. С возникновением генетики учение чистого Э. оказалось окончательно опровергнутым. На смену примитивным представлениям о развитии как процессе полного новообразования, зависящего лишь от внешних или нематериальных факторов, пришло современное учение о генетической информации, определяющей закономерности онтогенеза организмов. Однако конкретное развитие организмов подвержено, в пределах нормы реакции, большим или меньшим изменениям под влиянием внутренних и внешних факторов (см. Феногенетика). В свете этих представлений попытки обосновать Э. с позиций кибернетики (В. Эльзассер и др.) несостоятельны. Столь же неприемлемо допущение дуализма между преформированными молекулярно-биологическими генетическими структурами и якобы исключительно эпигенетическими процессами развития. Современная биология рассматривает закономерности осуществления наследственной информации в развитии организмов как единый взаимообусловленный процесс.

Преформизм — учение о наличии в половых клетках материальных структур, предопределяющих развитие зародыша и признаки развивающегося из него организма.

Преформизм возник на базе господствовавшего в XVII—XVIII вв. представления о преформации, согласно которому зародыш уже сформирован в половых клетках, и его дальнейшее развитие заключается только в увеличении в размерах

Учёные того времени разделились на анималькулистов и овистов. Первые считали, что зародыш содержится в сперматозоидах, вторые — в яйцеклетках.

66. Онтогене́з— индивидуальное развитие организма от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до смерти.

У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.

У семенных растений к эмбриональному развитию относят процессы развития зародыша, происходящие в семени.

Термин «онтогенез» впервые был введен Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.

Онтогенез делится на два периода:

- эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;

- постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.

Эмбриональный период

В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез. Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.

Дробление

Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то-есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).

Гаструляция

Гаструляция (впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.

Первичный органогенез

Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.

В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.

Постэмбриональное развитие

Постэмбриональное развитие бывает прямым и непрямым.

- Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.

- Непрямое развитие (личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.

Постэмбриональное развитие сопровождается ростом.

67. Эндокринные железы (железы внутренней секреции) — железы и параганглии, синтезирующие гормоны, которые выделяются в кровеносные (венозные) или лимфатические капилляры. Эндокринные железы не имеют выводных протоков.

К железам внутренней секреции относятся:

- Щитовидная железа

- Паращитовидные железы

- Вилочковая железа (тимус)

- Надпочечники

- Параганглии

- Половые железы — яички и яичники

- Инкреторная часть поджелудочной железы.

- Гипоталамо-гипофизарная система (гипоталамус, гипофиз).

- Эпифиз

Анатомия человека :: Эндокринная система

Функция и работа органов эндокринной системы - гипоталамус, щитовидня железа, поджелудочная железа, гипофиз, надпочечники, половые железы

Нормальное функционирование органов нашего тела основано на том, что они должны потреблять одни вещества для выработки других, необходимых организму. Для решения этой задачи существует система внутреннего контроля и регулирования - гормональная, или эндокринная система.

Гормоны выполняют роль химических агентов, которые выделяются в кровь некоторыми железами. Железы, вырабатывающие гормоны, называют железами внутренней секреции, эндокринными железами: у них нет выводных путей, и они выделяют свой секрет в межклеточное пространство, где его подхватывает кровь и переносит в другие части организма. Самые главные из них - гипоталамус, гипофиз, щитовидная железа, околощитовидные железы, поджелудочная железа, надпочечники и половые железы, хотя имеются и другие, такие, как эпифиз и тимус, действие которых до настоящего времени полностью не изучено.

Есть также железы другого вида (потовые, слюнные, слезные и др.), являющиеся экзокринными, то есть внешней секреции, так как они не выделяют свои продукты в кровоток.

Железы внутренней секреции Гипоталамус - это орган головного мозга, который, наподобие диспетчерской, дает распоряжения по выработке и распределению гормонов в нужном количестве и в нужное время.

Щитовидная железа, околощитовидные железы - щитовидная железа, расположенная в передней части шеи, секретирует три гормона. К ней примыкают четыре небольшие околощитовидные железы, участвующие в обмене кальция.

Поджелудочная железа - этот орган является одновременно экзокринным и эндокринным. Как эндокринный, он вырабатывает два гормона - инсулин и глюкагон, регулирующие обмен углеводов.

Гипофиз - железа, расположенная в основании черепа, выделяющая большое количество трофических гормонов - тех, которые стимулируют секрецию других эндокринных желез.

Надпочечники - представляют собой две небольшие железы, расположенные по одной над каждой почкой и состоящие из двух самостоятельных частей - коры и мозгового вещества.

Половые железы - половые железы (яичники у женщин и яички у мужчин) вырабатывают половые клетки и другие основные гормоны, участвующие в репродуктивной функции. 68. Эмбриональный (зародышевый) период длится от момента оплодотворения яйцеклетки до выхода зародыша из яйцевых оболочек. 1. Первый этап эмбрионального развития – дробление. При этом из зиготы путем митотического деления образуются сначала 2 клетки, затем 4, 8 и т. д. Образующиеся клетки называются бластомерами, а зародыш на этой стадии развития – бластулой. При этом общая масса и объем почти не увеличиваются, а новые клетки приобретают все меньшие размеры. Митотические деления происходят быстро одно за другим.

2. Гаструляция. В это время бластомеры, продолжающие быстро делиться, приобретают двигательную активность и перемещаются относительно друг друга, формируя слои клеток – зародышевые листки. Гастру-ляция может происходить либо путем инвагинации (впячивания) иммиграцией отдельных клеток, эпибо-лией (обрастанием), либо деламинацией (расщеплением на две пластинки). Формируется наружный зародышевый листок – эктодерма, и внутренний – энтодерма. Затем наступает этап гисто– и органогенеза. При этом вначале образуется зачаток нервной системы – нейру-ла. После этого на передней части трубки формируется зачаток головного мозга и органов чувств, а из основной части трубки – зачаток спинного мозга и периферической нервной системы. Кроме того, из эктодермы развивается кожа и ее производные. Энтодерма дает начало органам дыхательной и пищеварительной систем. Из мезодермы формируются мышечная, хрящевая и костная ткань, органы кровеносной и выделительной систем.

Критические периоды. Наиболее высокой чувствительностью к повреждающим агентам обладают зародыши во время имплантации (первый критигеский период), соответствую­щий 7—8-му дню эмбриогенеза, и во время плацентации (второй критигеский период). Плацентация приходится на 3—8-ю неделю эмбриогенеза и совпадает с этапом формирования зачатков органов. Повреждающие факторы внешней среды (химические агенты, в том числе лекарственные, радиация и др.) могут оказывать неодинаковое влияние на зародыши, находящиеся в разных стадиях развития: эмбриотоксическое или тератогенное. Эмбриотоксическое действие повреждающих факторов характерно для первого критического периода, тератогенное — для второго. В период имплантации зародыш либо погибает (при повреждении многих бластомеров), либо дальнейший эмбриональный цикл не нарушается (при со­хранности большого числа бластомеров, способных к полипотентному развитию). При поражении зародыша в период плацентации и органогенеза характерно возникновение уродств. При этом пороки развития образуются в тех органах, которые в момент действия повреждающих агентов находились в процессе активной дифференцировки и развития. У различных органов эти периоды не совпадают во времени. Поэтому при кратковременном действии тератогенного фактора формируются отдельные аномалии развития, при длительном — множественные.

69. Генетический потенциал человека ограничен во времени, причем довольно жестко. Если пропустить срок ранней социализации, он угаснет, не успев реализоваться. Ярким примером этого утверждения являются многочисленные случаи, когда младенцы силой обстоятельств попадали в джунгли и проводили среди зверей несколько лет. После возвращения их в человеческое сообщество они не могли уже в полной мере наверстать упущенное: овладеть речью, приобрести достаточно сложные навыки человеческой деятельности, у них плохо развивались психические функции человека. Это и есть свидетельство  того, что характерные черты человеческого поведения и деятельности приобретаются только через социальное наследование, только через передачу социальной программы в процессе воспитания и обучения.

Для понимания роли наследственности и среды в онтогенезе человека важное значение имеют такие понятия, как «генотип» и «фенотип». Генотип — это наследственная основа организма, совокупность генов, локализованных в его хромосомах, это  генетическая конституция, которую организм получает от своих родителей.

Фенотип — совокупность всех свойств и признаков организма, сформировавшихся в процессе его индивидуального развития. Фенотип определяется взаимодействием организма с условиями среды, в которых протекает его развитие. В отличие от генотипа фенотип изменяется в течение всей жизни организма и  зависит от генотипа и среды. Одинаковые генотипы (у однояйцевых близнецов), оказавшись в различных средах, могут давать различные фенотипы. С учетом всех факторов воздействия фенотип человека можно представить состоящим из нескольких элементов. К ним относятся: биологические задатки, кодируемые в генах; среда (социальная и природная); деятельность индивида; ум (сознание, мышление).

Исходя из сложной структуры фенотипа человека, можно сказать, что предметом евгеники,  является только один — первый из указанных элементов. Представители евгеники абсолютизируют именно его. В то же время социальные элементы фенотипа человека остаются вне их поля зрения. В этом состоит ограниченность позиции последователей данной теории.

Взаимодействие наследственности и среды в развитии человека играет важную роль на  протяжении всей его жизни. Но особую важность оно приобретает в периоды формирования организма: эмбрионального, грудного, детского, подросткового и юношеского. Именно в это время наблюдается интенсивный процесс развития организма и формирования личности.

Наследственность определяет то, каким может стать организм, но развивается человек под одновременным влиянием обоих факторов — и наследственности, и среды. Сегодня становится общепризнанным, что адаптация человека осуществляется под влиянием двух программ наследственности: биологической и социальной. Все признаки и свойства любого индивида являются результатом взаимодействия его генотипа и среды. Поэтому каждый человек есть и часть природы, и продукт общественного развития.

С такой позицией сегодня согласно большинство ученых. Разногласие возникает тогда, когда речь заходит о роли наследственности и среды в исследовании умственных способностей человека. Одни считают, что умственные способности наследуются генетически, другие говорят о том, что развитие умственных способностей определяется влиянием социальной среды.

Точное определение понятия «умственные способности» также представляет собой довольно трудную задачу. Интеллектуальные способности весьма разнообразны и своеобразны. Человек может быть гениальным шахматистом и плохим артистом (поэтом, математиком и т.д.), и наоборот. Но даже сама процедура применения тестов на определение IQ имеет свои недостатки, которые отмечают многие ученые. Например, при определении IQ многое зависит от учета социальной среды, уровня и характера воспитания и образования испытуемых, их организованности, внимательности, собранности и даже темперамента.  Результаты тестирования так же зависят не только от испытуемых, но и от тестирующих — какие вопросы задаются, для какой цели, из какой области или деятельности и т.д. Получается, что если детям, которые воспитывались на улице, задать вопрос о том, как надо вести себя в обществе, а у детей аристократов спросить, например, о правилах кулачного боя, то,  вероятно, IQ и тех, и других будет невелик и во многом одинаков.

Таким образом, исчерпывающие сведения об умственных способностях людей с помощью IQ получить достаточно трудно.

70. Эмбриогенез человека - это часть его индивидуального развития, онтогенеза.

В процессе эмбриогенеза можно выделить следующие основные стадии:

1. Оплодотворение ~ слияние женской и мужской половых клеток. В результатеобразуется новый одноклеточный организм-зигота.

2. Дробление. Серия быстро следующих друг за другом делений зиготы. Эта стадия заканчивается образованием многоклеточного зародыша, имеющего у человека форму пузырька-бластоцисты, соответствующей бластуле других позвоночных.

3. Гаструляция. В результате деления, дифференцировки, взаимодействия и перемещения клеток зародыш становится многослойным. Появляются зародышевые листки эктодерма, энтодерма и мезодерма, несущие в себе накладки различных тканей и органов.

4. Гистогенез, органогенез, системогенез. В ходе дифференцировки зародышевых листков образуются зачатки тканей, формирующие органы и системы организма человека.

Тератогенные факторы

Тератогенез - возникновение пороков развития под влиянием факторов внешней среды (тератогенных факторов) или в результате наследственных болезней.

Известно, что распространенность самопроизвольных абортов составляет 15-20% общего числа беременностей, 3-5% новорожденных имеют пороки развития, еще у 15% детей пороки развития выявляют в возрасте 5-10 лет.

Тератогенные факторы включают лекарственные средства, наркотики и многие другие вещества.

Основне тератогенные факторы

Инфекции

- Герпес (вирусы простого герпеса типа 1 и 2)

- Инфекционная эритема (парвовирусная инфекция)

- Краснуха

- Сифилис

- Токсоплазмоз

- Венесуэльский лошадиный энцефалит

- Инфекции, вызванные вирусом varicella-zoster

Ионизирующее излучение

- Радиоактивные осадки

- Лечение радиоактивным йодом

- Лучевая терапия

Метаболические нарушения и вредные привычки у беременной

- Алкоголизм

- Кокаинизм

- Вдыхание толуола

- Курение

- Эндемический зоб

- Дефицит фолиевой кислоты

- Длительная гипертермия

- Фенилкетонурия

71. ГОМЕОСТАЗ генетический — способность популяции поддерживать динамическое равновесие генетического состава, что обеспечивает ее жизнеспособность.

Гомеостатические системы обладают следующими свойствами:

- Нестабильность системы: тестирует, каким образом ей лучше приспособиться.

- Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.

- Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбэка, на которые реагирует система:

- Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.

- Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.

- Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).

-Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.

- Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

72. Регенерация — свойство всех живых организмов со временем восстанавливать поврежденные ткани, а иногда и целые потерянные органы.

Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждениями или утратой, называют физиологической.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физическими или химическими агентами. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации.

Источники повреждения ДНК

- УФ излучение

- Радиация

- Химические вещества

- Ошибки репликации ДНК

- Апуринизация — отщепление азотистых оснований от сахарофосфатного остова

- Дезаминирование — отщепление аминогруппы от азотистого основания

Устройство системы репарации

Каждая из систем репарации включает следующие компоненты:

- фермент, "узнающий" химически изменённые участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения

- фермент, удаляющий повреждённый участок

- фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого

- фермент (ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность

Типы репарации: прямая и эксцизионная.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]