Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
rgufksit_12_poslednyaya_vosstanovlen_0.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
873.98 Кб
Скачать

Аналитический анализ. Основные статистические характеристики ряда измерений

К основным статистическим характеристикам ряда измерений (вариацион­ного ряда) относятся характеристики положения (средние характе­ристики, или центральная тенденция выборки); характеристики рассеяния (ва­риации, или колеблемости) и характеристики формы распределения.

К характеристикам положения относятся среднее арифметическое значе­ние (среднее значение), мода и медиана.

К характеристикам рассеяния (вариации, или колеблемости) относятся: размах вариации, дисперсия, среднее квадратическое (стандартное) отклонение, ошибка средней арифметической (ошибка средней), коэффициент вариации и др.

К характеристикам формы относятся коэффициент асимметрии, мера ско­шенности и эксцесс.

Далее приводятся формулы для расчёта основных статистических характеристик, причём предлагаются расчётные формулы как для несгруппированных данных, так и для данных, сгруппированных в интервалы.

Характеристики положения

1. Среднее арифметическое значение

Среднее арифметическое значение – одна из основных характеристик вы­борки.

Она, как и другие числовые характеристики выборки, может вычисляться как по необработанным первичным данным, так и по результатам группировки этих данных.

Точность вычисления по необработанным данным выше, но процесс вычисления оказывается трудоёмким при большом объёме выборки.

Для несгруппированных данных среднее арифметическое определяется по формуле:

,

где n- объем выборки, х1, х2, ... хn - результаты измерений.

Для сгруппированных данных:

,

где n- объем выборки, k – число интервалов группировки, ni – частоты интервалов, xi – срединные значения интервалов.

2. Мода

Определение 1. Мода - наиболее часто встречающаяся величина в данных вы­борки. Обозначается Мо и определяется по формуле:

,

где - нижняя граница модального интервала, - ширина интервала группи­ровки, - частота модального интервала, - частота интервала, предшествую­щего модальному, - частота интервала, последующего за модаль­ным.

Определение 2. Модой Мо дискретной случайной величины называется наиболее вероятное её значение.

Геометрически моду можно интерпретировать как абсциссу точки максимума кривой распределения. Бывают двухмодальные и многомодальные распределения. Встречаются распределения, которые имеют минимум, но не имеют максимума. Такие распределения называются антимодальными.

Определение. Модальным интервалом называется интервал группировки с наибольшей частотой.

3. Медиана

Определение. Медиана - результат измерения, который находится в сере­дине ранжированного ряда, иначе говоря, медианой называется значение признака Х, когда одна половина значений экспериментальных данных меньше её, а вторая половина – больше, обозначается Ме.

Когда объем выборки n - четное число, т. е. результатов измерений четное количество, то для определения медианы рассчитывается среднее значение двух показателей выборки, находящихся в середине ранжированного ряда.

Для данных, сгруппированных в интервалы, медиану определяют по фор­муле:

,

где - нижняя граница медианного интервала; ширина интервала группи­ровки, 0,5n – половина объёма выборки, - частота медианного интервала, - накопленная частота интервала, предшествующего медианному.

Определение. Медианным интервалом называется тот интервал, в котором накопленная частота впервые окажется больше половины объёма выборки (n/2) или накопленная частость окажется больше 0,5.

Численные значения среднего, моды и медианы отличаются, когда имеет место несимметричная форма эмпирического распределения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]