
- •2. Принципы построения реляционной бд. Состав реляционной субд.
- •3. Угрозы информационной безопасности. Виды угроз.
- •1. Средства модульного программирования: функции (назначение, описания, определения, вызов).
- •2. Объекты данных и объекты манипулирования данными в модели базы данных. Структурированный язык запросов sql. Общая характеристика групп операторов (подъязыки). Типы данных в sql.
- •3. Принципы обеспечения информационной безопасности.
- •1. Наследование в объектно-ориентированном программировании
- •2. Характеристика иерархической, сетевой, реляционной моделей бд.
- •3. Направления обеспечения информационной безопасности. Организационная защита.
- •1. Базовые алгоритмические операторы (if, switch, for, while).
- •2. Понятие транзакций. Базовые свойства транзакций. Методы управления транзакциями.
- •3. Направления обеспечения информационной безопасности. Инженерно-техническая защита.
- •1. Идентификаторы – имена программных объектов. Области действия.
- •2. Проектирование баз данных на основе модели "Сущность-связь". Основные элементы модели. Основные нотации, используемые для построения er диаграмм.
- •3. Межсетевые экраны и антивирусы. Назначение и виды.
- •1. Информатика. Массивы – простейший структурированный тип данных.
- •2. Архитектура субд и бд. Компоненты субд построенных по технологии клиент-сервер.
- •3. Криптографические методы защиты информации. Виды шифрования.
- •2. Проектирование бд на основе нормализации, характеристика 1nf, 2nf, 3nf.
- •3. Служба dns. Конфигурирование: зоны, ресурсные записи, виды серверов.
- •2. Основные характеристики ос. Многозадачность. Системы управления данными и файлами. Обеспечение аппаратно-программного интерфейса.
- •3. Служба dns. Назначение, принципы работы, виды запросов.
- •2. Операционные системы. Антивирусные программы и антивирусная технология. Проверка целостности. Стандартные служебные программы обслуживания дисков. Архиваторы.
- •3. Служба каталогов х.500. Основные понятия. Агенты, модели, объекты, схемы.
- •1. Гипертекстовый документ как средство обмена информацией и форма представления и отображения данных. Элементы гипертекстовой страницы и их атрибуты. Элементы языка html.
- •2. Сетевые ос. Структура сетевой ос. Одноранговые сетевые ос и ос с выделенными серверами.
- •1. Основные понятия теории моделирования систем. Понятия системы, ее модели и моделирования.
- •2. Операционные системы. Управление процессорами и заданиями в однопроцессорном вычислительном комплексе. Алгоритмы планирования процессов. Три основных уровня планирования.
- •3. Особенности построения и организации эс. Основные режимы работы эс.
- •1. Классификация видов моделирования систем.
- •2. Операционные системы. Иерархическая структура файловой системы. Физическая организация файловой системы. Обработка прерываний.
- •3. Технология разработки эс.
- •1. Сетевые модели. Отображение динамики системы сетями Петри.
- •2. Операционные системы. Методы распределения памяти с использованием дискового пространства. Страничное распределение. Сегментное распределение. Странично-сегментное распределение.
- •3.Интеллектуальные ис. Формирование и оценка компетентности группы экспертов. Характеристика и режимы работы группы экспертов.
- •1. Дискретно – стохастические модели. Математический аппарат систем массового обслуживания.
- •2. Основные классы архитектур программных средств.
- •3. Эс с неопределёнными знаниями. Теория субъективных вероятностей в условиях неопределённости.
- •1. Статическое моделирование на эвм. Моделирование дискретных и непрерывных случайных величин.
- •2. Жизненный цикл программного средства.
- •3. Задачи обработки экспертных оценок. Групповая экспертная оценка объектов при непосредственном оценивании.
- •Билет №17
- •1 . Универсальные языки (с, Delphi, Pascal)
- •2. Специализированные языки (gpss, siman, slam).
- •3. Имитационные среды (Extend, gpss World, Anylogic)
- •Билет №18
- •Билет №19
- •Билет №20
- •3. Виды отказов в информационных системах.
- •1. Эвм с нетрадиционной архитектурой. Классификация эвм по Флину.
- •2. Методы разработки структуры программ.
- •3. Количественные показатели надежности ис. Вероятность безотказной работы. Интенсивность отказов.
- •1.Понятия позиционных систем счисления. Основные типы позиционных систем в эвм. Представления отрицательных чисел в эвм. Прямой, обратный и дополнительный коды.
- •2. Основные классы архитектур программных средств.
- •3. Основы теории Демстера-Шеффера: фрейм различия, базовая вероятность.
- •1. Структура эвм с одной системной шиной. Понятие системной шины. Классификация линий шины. Их назначение. (Архитектура эвм)
- •2. Понятие внешнего описания программного средства. (Технология программирования)
- •3. Понятие isdn. Краткая историческая справка о появлении isdn. Технология isdn. (ИиОп)
- •1. Запоминающие устройства (зу). Основные показатели зу. Внутренние и внешние зу.
- •2. Содержание процесса определения требований к информационной системе.
- •3.Компоненты сетей isdn. Структура построения isdn.
- •Кмпоненты isdn
- •1. Способы обмена данными. Принцип программного обмена данными. Обмен по прерываниям. Обмен в режиме прямого доступа к памяти. (Архитектура эвм)
- •2. Функциональная спецификация программного средства. (Технология программирования)
- •3. Стандарты Internet как основа стандартизации в открытых системах. Стадии стандартизации протокола. (Открытые системы и сети)
- •1. Накопители на гибких и жестких магнитных дисках. Магнитооптические и оптические диски. Принципы хранения информации. Носители на оптических дисках.
- •2. Понятие тестирования программного средства. Содержание процесса тестирования. Артефакты Процесса тестирования. Тестовый пример, процедура…
- •Артефакт: Тестовый пример
- •3. Общая характеристика процесса разработки. Основные подпроцессы (рабочие процессы) процесса разработки. Продукты пр, его состав.
- •1. Последовательные интерфейсы связи rs-232. Шина usb. Firewire. (Архитектура эвм)
- •2. База знаний как элемент экспертной системы. Необходимые условия представления знаний. (эс)
- •3. Модели жизненного цикла ис. Стадии моделей жц. Основные модели. Модель проектирования msf. (пис)
- •1.Система. Основные понятия и определения. Элемент системы. Связь. Цель функционирования системы. Модели системы различного уровня.
- •2.Логические модели и логическое программирование. Простейшие конструкции языка предикатов (понятия), правильно построенные формулы.[X]
- •3.Содержание исходной фазы разработки ис. Формирование требований. Документ концепция ис. Отображение требований в моделях ис
- •1. Закономерности систем. Иерархичность. Целостность. Интегративность. Коммуникативность.(типис)
- •2. Системы построения на знаниях. Понятие знаний, фактов и правил. Независимость знаний и процедур обработки.(Представления знаний в ис)
- •3. Структура информационно-логической модели ис. Состав моделей uml. Диаграмма модели классов. Модель классов.(пис)
- •1. Информация. Основные понятия и определения. Синтаксический, семантический, прагматический аспекты информации. Количественные меры оценки информации. Понятие информационной системы.
- •2.Унификаторы. Этапы решения задач и извлечение ответа с использованием логического программирования
- •Модели состава и структура системы. Характеристика математического аппарата, используемого для их описания.
- •2. Семантические сети, элементы семантической сети и их отношения. Представление структуры понятий семантической сетью. (Представления знаний в ис)
- •1.Анализ структуры системы на основе топологических описаний (теории графов). Выявление циклов и цепей. Алгоритмы поиска цепей. Построение остового дерева. Построение наименьшего остового дерева.
- •2. Представление событий семантической сетью. Получение вывода с помощью семантической сети.
- •3. Понятие сценариев выполнения функций ис. Их отображение с помощей моделей uml (Диаграммы деятельности, взаимодействия, состояний) и sadt (idef 3).[X]
- •1. Представление сетей на основе сетевых графов. Задача поиска максимального потока в сети. (типис)
- •2. Продукционные модели. Механизм функционирования систем продукции. Прямая и обратная цепочки рассуждений в системе продукций. (Представления знаний в ис)
- •3. Выявление объектов и классов ис. Типы объектов и классов по положению их в ис. (пис)
- •1.Описание систем на основе объектно-ориентированного подхода. Модель классов. Модель состояний. Переходы. События.
- •2.Фреймовые системы и их функционирование. Обобщенная структура фрейма. Представление знаний фреймами.
- •3.Управление проектом ис. Выделенные роли исполнителей. Риски, управление рисками.
- •1. Основные понятия и определения теории автоматического управления.
- •2. Количественная мера информации (комбинаторное определение количества информации. Определение количества информации по к. Шеннону).
- •3. Основные документы проектирования ис.
Билет №20
1.Понятие алгоритма и его свойства. Программа и принцип программного управления. Поколения ЭВМ.
Алгоритм - точное предписание исполнителю совеpшить определенную последовательность действий для достижения поставленной цели за конечное число шагов.
Свойства алгоритма:
• Дискретность (прерывность, раздельность) – алгоритм должен представлять процесс решения задачи как последовательное выполнение простых (или ранее определенных) шагов. Каждое действие, предусмотренное алгоритмом, исполняется только после того, как закончилось исполнение предыдущего.
• Определенность – каждое правило алгоритма должно быть четким, однозначным и не оставлять места для произвола. Благодаря этому свойству выполнение алгоритма носит механический характер и не требует никаких дополнительных указаний или сведений о решаемой задаче.
• Результативность (конечность) – алгоритм должен приводить к решению задачи за конечное число шагов.
• Массовость – алгоритм решения задачи разрабатывается в общем виде, то есть, он должен быть применим для некоторого класса задач, различающихся только исходными данными. При этом исходные данные могут выбираться из некоторой области, которая называется областью применимости алгоритма.
Компью́терная програ́мма — последовательность инструкций, предназначенных для исполнения устройством управления вычислительной машины.
Принципы программного управления
Используемый в современных компьютерах принцип программного управления был предложен в 1945 году Дж. фон Нейманом. Этот принцип включает следующие положения.
1. Информация кодируется в двоичной форме и разделяется на единицы информации, называемые словами.
2. Разнотипные слова информации различаются по способу использования, но не способами кодирования.
3. Слова информации размещаются в ячейках памяти машины и идентифицируются номерами ячеек, называемыми адресами слов.
4. Алгоритм представляется в форме последовательности управляющих слов, называется командами. Алгоритм, представленный в терминах машинных команд, называется программой.
5. Выполнение вычислений, предписанных алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом алгоритмом.
Поколения ЭВМ
Поколение |
Годы |
Элементная база |
Быстродействие |
Объем ОП |
Устройства ввода-вывода |
1 |
С 1946 |
Электронная лампа |
10-20 тыс. операций в 1с. |
2 Кбайт |
Перфоленты, перфокарты |
2 |
С 1955 |
Транзистор |
100-1000 тыс. операций в 1с. |
2-32 Кбайт |
Магнитная лента, магнитные барабаны |
3 |
С 1966 |
Интегральная схема (ИС) |
1-10 млн. операций в 1с. |
64 Кбайт |
Многотерминальные системы |
4 |
С 1975 |
Большая интегральная схема (БИС) |
1-100 млн. операций в 1с. |
1-64 Мбайт |
Сети ПЭВМ |
5 |
С 90-х годов 20 в. |
Сверхбольшая интегральная схема (СБИС) |
Более 100 млн. операций в 1с. |
|
Оптические и лазерные устройства |
2.Понятие сортировки массивов. Методы сортировки. Разработать программный модуль для сортировки любым методом.
Сортировка – алгоритм для упорядочивания элементов в списке.
Список алгоритмов сортировки
В этой таблице n — это количество записей, которые необходимо упорядочить, а k — это количество уникальных ключей.
Алгоритмы устойчивой сортировки
Сортировка выбором (Selection sort) — Сложность алгоритма: O(n2); поиск наименьшего или наибольшего элемента и помещение его в начало или конец упорядоченного списка
Сортировка пузырьком (англ. Bubble sort ) — сложность алгоритма: O(n2); для каждой пары индексов производится обмен, если элементы расположены не по порядку.
Сортировка перемешиванием (Шейкерная, Cocktail sort, bidirectional bubble sort) — Сложность алгоритма: O(n2)
Гномья сортировка — имеет общее с сортировкой пузырьком и сортировкой вставками. Сложность алгоритма — O(n2).
Сортировка вставками (Insertion sort) — Сложность алгоритма: O(n2); определяем где текущий элемент должен находиться в упорядоченном списке и вставляем его туда
Сортировка слиянием (Merge sort) — Сложность алгоритма: O(n log n); требуется O(n) дополнительной памяти; выстраиваем первую и вторую половину списка отдельно, а затем — сливаем упорядоченные списки
Сортировка с помощью двоичного дерева (англ. Tree sort) — Сложность алгоритма: O(n log n); требуется O(n) дополнительной памяти
Алгоритм сортировки Timsort (англ. Timsort) — Сложность алгоритма: O(n log n); требуется O(n) дополнительной памяти; Комбинированный алгоритм (используется сортировка вставками и сортировка слиянием. Разработан для использования в языке Python[4]
Сортировка подсчётом (Counting sort) — Сложность алгоритма: O(n+k); требуется O(n+k) дополнительной памяти (рассмотрено 3 варианта)
Блочная сортировка (Корзинная сортировка, Bucket sort) — Сложность алгоритма: O(n); требуется O(k) дополнительной памяти и знание о природе сортируемых данных, выходящее за рамки функций "переставить" и "сравнить".
Алгоритмы неустойчивой сортировки
Сортировка выбором (Selection sort) — сложность алгоритма: O(n^2); поиск наименьшего или наибольшего элемента и помещение его в начало или конец упорядоченного списка
Сортировка Шелла (Shell sort) — сложность алгоритма: O(n \log^2{n}); попытка улучшить сортировку вставками
Сортировка расчёской (Comb sort) — сложность алгоритма: O(n \log{n})
Пирамидальная сортировка (сортировка кучи, Heapsort) — сложность алгоритма: O(n \log{n}); превращаем список в кучу, берём наибольший элемент и добавляем его в конец списка
Плавная сортировка (Smoothsort) — сложность алгоритма: O(n \log{n})
Быстрая сортировка (Quicksort), в варианте с минимальными затратами памяти — сложность алгоритма: O(n \log{n}) — среднее время, O(n^2) — худший случай; широко известен как быстрейший из известных для упорядочения больших случайных списков; с разбиением исходного набора данных на две половины так, что любой элемент первой половины упорядочен относительно любого элемента второй половины; затем алгоритм применяется рекурсивно к каждой половине. При использовании O(n) дополнительной памяти, можно сделать сортировку устойчивой.
Introsort — сложность алгоритма: O(n \log{n}), сочетание быстрой и пирамидальной сортировки. Пирамидальная сортировка применяется в случае, если глубина рекурсии превышает \log{n}.
Patience sorting — сложность алгоритма: O(n \log{n}) — наихудший случай, требует дополнительно O(n) памяти, также находит самую длинную увеличивающуюся подпоследовательность
Stooge sort — рекурсивный алгоритм сортировки с временной сложностью O(n^{\log_{1{,}5}{3}}) \approx O(n^{2.71}).
Поразрядная сортировка (она же цифровая сортировка) — сложность алгоритма: O(nk); требуется O(k) дополнительной памяти.
Непрактичные алгоритмы сортировки
Bogosort — O(n·n!) в среднем. Произвольно перемешать массив, проверить порядок.
Сортировка перестановкой — O(n·n!) — худшее время. Для каждой пары осуществляется проверка верного порядка и генерируются всевозможные перестановки исходного массива.
Глупая сортировка (Stupid sort) — O(n3); рекурсивная версия требует дополнительно O(n2) памяти
Bead Sort — O(n) or O(√n), требуется специализированное аппаратное обеспечение
Блинная сортировка (Pancake sorting) — O(n), требуется специализированное аппаратное обеспечение
Алгоритмы, не основанные на сравнениях
Блочная сортировка (Корзинная сортировка, Bucket sort)
Лексикографическая или поразрядная сортировка (Radix sort)
Сортировка подсчётом (Counting sort)
Прочие алгоритмы сортировки
Топологическая сортировка
Внешняя сортировка
Пузырьковая сортировка С#:
void BubbleSort(ref int[] A)
{
for (int i = 0; i < A.Length; i++)
{
for (int j = 0; j < A.Length - 1; j++)
{
if (A[j] > A[j + 1])
{
int z = A[j];
A[j] = A[j + 1];
A[j + 1] = z;
}
}
}
}