
- •2. Принципы построения реляционной бд. Состав реляционной субд.
- •3. Угрозы информационной безопасности. Виды угроз.
- •1. Средства модульного программирования: функции (назначение, описания, определения, вызов).
- •2. Объекты данных и объекты манипулирования данными в модели базы данных. Структурированный язык запросов sql. Общая характеристика групп операторов (подъязыки). Типы данных в sql.
- •3. Принципы обеспечения информационной безопасности.
- •1. Наследование в объектно-ориентированном программировании
- •2. Характеристика иерархической, сетевой, реляционной моделей бд.
- •3. Направления обеспечения информационной безопасности. Организационная защита.
- •1. Базовые алгоритмические операторы (if, switch, for, while).
- •2. Понятие транзакций. Базовые свойства транзакций. Методы управления транзакциями.
- •3. Направления обеспечения информационной безопасности. Инженерно-техническая защита.
- •1. Идентификаторы – имена программных объектов. Области действия.
- •2. Проектирование баз данных на основе модели "Сущность-связь". Основные элементы модели. Основные нотации, используемые для построения er диаграмм.
- •3. Межсетевые экраны и антивирусы. Назначение и виды.
- •1. Информатика. Массивы – простейший структурированный тип данных.
- •2. Архитектура субд и бд. Компоненты субд построенных по технологии клиент-сервер.
- •3. Криптографические методы защиты информации. Виды шифрования.
- •2. Проектирование бд на основе нормализации, характеристика 1nf, 2nf, 3nf.
- •3. Служба dns. Конфигурирование: зоны, ресурсные записи, виды серверов.
- •2. Основные характеристики ос. Многозадачность. Системы управления данными и файлами. Обеспечение аппаратно-программного интерфейса.
- •3. Служба dns. Назначение, принципы работы, виды запросов.
- •2. Операционные системы. Антивирусные программы и антивирусная технология. Проверка целостности. Стандартные служебные программы обслуживания дисков. Архиваторы.
- •3. Служба каталогов х.500. Основные понятия. Агенты, модели, объекты, схемы.
- •1. Гипертекстовый документ как средство обмена информацией и форма представления и отображения данных. Элементы гипертекстовой страницы и их атрибуты. Элементы языка html.
- •2. Сетевые ос. Структура сетевой ос. Одноранговые сетевые ос и ос с выделенными серверами.
- •1. Основные понятия теории моделирования систем. Понятия системы, ее модели и моделирования.
- •2. Операционные системы. Управление процессорами и заданиями в однопроцессорном вычислительном комплексе. Алгоритмы планирования процессов. Три основных уровня планирования.
- •3. Особенности построения и организации эс. Основные режимы работы эс.
- •1. Классификация видов моделирования систем.
- •2. Операционные системы. Иерархическая структура файловой системы. Физическая организация файловой системы. Обработка прерываний.
- •3. Технология разработки эс.
- •1. Сетевые модели. Отображение динамики системы сетями Петри.
- •2. Операционные системы. Методы распределения памяти с использованием дискового пространства. Страничное распределение. Сегментное распределение. Странично-сегментное распределение.
- •3.Интеллектуальные ис. Формирование и оценка компетентности группы экспертов. Характеристика и режимы работы группы экспертов.
- •1. Дискретно – стохастические модели. Математический аппарат систем массового обслуживания.
- •2. Основные классы архитектур программных средств.
- •3. Эс с неопределёнными знаниями. Теория субъективных вероятностей в условиях неопределённости.
- •1. Статическое моделирование на эвм. Моделирование дискретных и непрерывных случайных величин.
- •2. Жизненный цикл программного средства.
- •3. Задачи обработки экспертных оценок. Групповая экспертная оценка объектов при непосредственном оценивании.
- •Билет №17
- •1 . Универсальные языки (с, Delphi, Pascal)
- •2. Специализированные языки (gpss, siman, slam).
- •3. Имитационные среды (Extend, gpss World, Anylogic)
- •Билет №18
- •Билет №19
- •Билет №20
- •3. Виды отказов в информационных системах.
- •1. Эвм с нетрадиционной архитектурой. Классификация эвм по Флину.
- •2. Методы разработки структуры программ.
- •3. Количественные показатели надежности ис. Вероятность безотказной работы. Интенсивность отказов.
- •1.Понятия позиционных систем счисления. Основные типы позиционных систем в эвм. Представления отрицательных чисел в эвм. Прямой, обратный и дополнительный коды.
- •2. Основные классы архитектур программных средств.
- •3. Основы теории Демстера-Шеффера: фрейм различия, базовая вероятность.
- •1. Структура эвм с одной системной шиной. Понятие системной шины. Классификация линий шины. Их назначение. (Архитектура эвм)
- •2. Понятие внешнего описания программного средства. (Технология программирования)
- •3. Понятие isdn. Краткая историческая справка о появлении isdn. Технология isdn. (ИиОп)
- •1. Запоминающие устройства (зу). Основные показатели зу. Внутренние и внешние зу.
- •2. Содержание процесса определения требований к информационной системе.
- •3.Компоненты сетей isdn. Структура построения isdn.
- •Кмпоненты isdn
- •1. Способы обмена данными. Принцип программного обмена данными. Обмен по прерываниям. Обмен в режиме прямого доступа к памяти. (Архитектура эвм)
- •2. Функциональная спецификация программного средства. (Технология программирования)
- •3. Стандарты Internet как основа стандартизации в открытых системах. Стадии стандартизации протокола. (Открытые системы и сети)
- •1. Накопители на гибких и жестких магнитных дисках. Магнитооптические и оптические диски. Принципы хранения информации. Носители на оптических дисках.
- •2. Понятие тестирования программного средства. Содержание процесса тестирования. Артефакты Процесса тестирования. Тестовый пример, процедура…
- •Артефакт: Тестовый пример
- •3. Общая характеристика процесса разработки. Основные подпроцессы (рабочие процессы) процесса разработки. Продукты пр, его состав.
- •1. Последовательные интерфейсы связи rs-232. Шина usb. Firewire. (Архитектура эвм)
- •2. База знаний как элемент экспертной системы. Необходимые условия представления знаний. (эс)
- •3. Модели жизненного цикла ис. Стадии моделей жц. Основные модели. Модель проектирования msf. (пис)
- •1.Система. Основные понятия и определения. Элемент системы. Связь. Цель функционирования системы. Модели системы различного уровня.
- •2.Логические модели и логическое программирование. Простейшие конструкции языка предикатов (понятия), правильно построенные формулы.[X]
- •3.Содержание исходной фазы разработки ис. Формирование требований. Документ концепция ис. Отображение требований в моделях ис
- •1. Закономерности систем. Иерархичность. Целостность. Интегративность. Коммуникативность.(типис)
- •2. Системы построения на знаниях. Понятие знаний, фактов и правил. Независимость знаний и процедур обработки.(Представления знаний в ис)
- •3. Структура информационно-логической модели ис. Состав моделей uml. Диаграмма модели классов. Модель классов.(пис)
- •1. Информация. Основные понятия и определения. Синтаксический, семантический, прагматический аспекты информации. Количественные меры оценки информации. Понятие информационной системы.
- •2.Унификаторы. Этапы решения задач и извлечение ответа с использованием логического программирования
- •Модели состава и структура системы. Характеристика математического аппарата, используемого для их описания.
- •2. Семантические сети, элементы семантической сети и их отношения. Представление структуры понятий семантической сетью. (Представления знаний в ис)
- •1.Анализ структуры системы на основе топологических описаний (теории графов). Выявление циклов и цепей. Алгоритмы поиска цепей. Построение остового дерева. Построение наименьшего остового дерева.
- •2. Представление событий семантической сетью. Получение вывода с помощью семантической сети.
- •3. Понятие сценариев выполнения функций ис. Их отображение с помощей моделей uml (Диаграммы деятельности, взаимодействия, состояний) и sadt (idef 3).[X]
- •1. Представление сетей на основе сетевых графов. Задача поиска максимального потока в сети. (типис)
- •2. Продукционные модели. Механизм функционирования систем продукции. Прямая и обратная цепочки рассуждений в системе продукций. (Представления знаний в ис)
- •3. Выявление объектов и классов ис. Типы объектов и классов по положению их в ис. (пис)
- •1.Описание систем на основе объектно-ориентированного подхода. Модель классов. Модель состояний. Переходы. События.
- •2.Фреймовые системы и их функционирование. Обобщенная структура фрейма. Представление знаний фреймами.
- •3.Управление проектом ис. Выделенные роли исполнителей. Риски, управление рисками.
- •1. Основные понятия и определения теории автоматического управления.
- •2. Количественная мера информации (комбинаторное определение количества информации. Определение количества информации по к. Шеннону).
- •3. Основные документы проектирования ис.
1. Основные понятия теории моделирования систем. Понятия системы, ее модели и моделирования.
Система – совокупность объектов, взаимодействие которых направлено на достижение какой либо цели.
Функционирование системы – переход во времени из одного состояния в другое.
Состояние системы – множество переменных, которые содержат всю информацию, необходимую для описания свойств системы в любой момент времени.
Внешняя среда – множество переменных, существующих вне системы, оказывающих влияние на систему или находящиеся под ее воздействием.
Модель – описание системы с целью ее изучения.
Моделирование системы – представление системы ее моделью и получение новых знаний о системе, путем проведения экспериментов на ее модели.
Сущность моделирования
Моделирование
начинается с определения цели разработки
модели, на основе которой устанавливаются
границы системы, уровень детализации
моделируемых процессов. Процесс
моделирования итерационный.
2. Операционные системы. Управление процессорами и заданиями в однопроцессорном вычислительном комплексе. Алгоритмы планирования процессов. Три основных уровня планирования.
Определение операционной системы
Это набор программ (обычных и микро), которые обеспечивают возможность использования аппаратуры компьютера. При этом аппаратура предоставляет сырую вычислительную мощность, а задача операционной системы состоит в предоставлении аппаратуры для пользователя в удобном для него виде.
Управление вычислительными процессами и заданиями
Эти две подсистемы ОС выполняют сходные функции: планирование загрузки процессоров и планирование загрузки вычислительных комплексов, имеют сходные механизмы планирования, работающие на разных уровнях - процессов и заданий пользователя соответственно.
В однопроцессорной ЭВМ подсистема управления процессорами выполняет единственную функцию: диспетчирования процессов, то есть планирует загрузку ЦП.
Система управления заданиями управляет прохождением заданий в ВС и выполняет следующие функции: 1.Предоставление языковых средств управления работами в вычислительной системе (Shell в UNIX). 2.Ввод и интерпретация заданий/команд. 3.Выделение и освобождение необходимых ресурсов. 4.Планирование заданий на выполнение. 5.Сбор и предоставление информации о состоянии заданий.
Три основных уровня планирования.
В однопроцессорном вычислительном комплексе существует три основных уровня планирования:
Планирование на верхнем уровне или планирование заданий.
На этом уровне осуществляется выбор заданий пользователем для выполнения и их запуск. Выбранные задания становятся готовыми процессами. Эту работу выполняет системный компонент - планировщик заданий.
Планирование на нижнем уровне или диспетчирование процессов.
Здесь осуществляется выбор готового процесса для выполнения, то есть предоставления ему ЦП. Выбранный процесс становится активным. Эту работу выполняет системный компонент - диспетчер.
Планирование на промежуточном уровне.
На данном уровне определяется, каким процессам будет разрешено состязаться за захват ЦП, то есть быть готовыми, и какие процессы будут кратковременно приостановлены (задержаны) для оптимизации загрузки системы. Промежуточное планирование управляет текущей производительностью вычислительной системы.
Алгоритмы планирования процессов
Существует множество различных алгоритмов планирования процессов. Группы наиболее часто встречающихся алгоритмов: алгоритмы, основанные на приоритетах, и алгоритмы, основанные на квантовании.
В соответствии с алгоритмами, основанными на квантовании, смена активного процесса происходит, если: *процесс завершился и покинул систему, *произошла ошибка, *процесс перешел в состояние ОЖИДАНИЕ, *исчерпан квант процессорного времени, отведенный данному процессу.
Процесс, который исчерпал свой квант, переводится в состояние готовность и ожидает, когда ему будет предоставлен новый квант процессорного времени, а на выполнение выбирается новый процесс из очереди готовых. Таким образом, ни один процесс не занимает процессор надолго, поэтому квантование широко используется в системах разделения времени.
Кванты, выделяемые процессам, могут быть одинаковыми для всех процессов или различными. По разному может быть организована очередь готовых процессов: циклически, FIFO или LIFO.
Приоритет - это число, характеризующее степень привилегированности процесса при использовании ресурсов вычислительной машины, в частности, процессорного времени: чем выше приоритет, тем выше привилегии.
Приоритеты подразделяются на статические, назначаемые извне системой администрации ВЦ, и динамические, присваиваемые системой автоматически в соответствии с поведением, потребностями в ресурсах и прочими характеристиками процессов.
Начальные значения динамических приоритетов обычно устанавливаются на основе статического, но действуют в течение короткого времени.
Две разновидности приоритетных алгоритмов: с относительными приоритетами и абсолютными приоритетами.
В обоих случаях выбор процесса на выполнение из очереди готовых осуществляется одинаково: выбирается процесс, имеющий наивысший приоритет. По-разному определяется момент смены активного процесса. В системах с относительными приоритетами активный процесс выполняется до тех пор, пока он сам не покинет процессор, перейдя в состояние ожидание (или же произойдет ошибка, или процесс завершится). В системах с абсолютными приоритетами выполнение активного процесса прерывается еще при одном условии: если в очереди готовых процессов появился процесс, приоритет которого выше приоритета активного процесса. В этом случае прерванный процесс переходит в состояние готовности.
Во многих операционных системах алгоритмы планирования построены с использованием как квантования, так и приоритетов. Например, в основе планирования лежит квантование, но величина кванта и/или порядок выбора процесса из очереди готовых определяется приоритетами процессов.
Для установления значений приоритетов заданий и процессов используются следующие дисциплины планирования и их различные комбинации.
Планирование по принципу FIFO. Самая простая дисциплина планирования фактически без переключения ЦП. Характеризуется небольшим колебанием времени выполнения и большей предсказуемостью, нежели другие дисциплины. Используется только в пакетных системах, не гарантирует реактивности системы и обычно в комбинации с другими дисциплинами.
Циклическое или круговое планирование, где каждому готовому процессу в цикле представляется квант времени. По истечении кванта времени процесс переходит в конец очереди готовых процессов. При блокировке квант теряется. Эффективно для СРВ, так как гарантирует приемлемое время ответа для всех интерактивных пользователей. Основная проблема выбора - оптимальный размер кванта. Стараются выбрать такой размер, чтобы большинство рядовых запросов обслуживались за один квант.
Планирование по принципу - "кратчайшее задание - первым" или "по наименьшему оставшемуся времени выполнения". Максимальный приоритет назначается процессу, либо заданию с минимальным оценочным временем до завершения. Недостаток: время ожидания на большие задания растет; большие издержки на регистрацию истекшего времени обслуживания. Достоинство: сокращение очередей заданий и ожидающих процессов; стремится к минимальному времени ожиданий для заданий.