
- •Федеральное агентство по образованию
- •Тульский государственный университет
- •Учебно-методическое пособие по дисциплине "Экспериментальная психология" тема «Основы измерения и количественного описания данных экспериментального исследования»
- •§1. Генеральная совокупность и экспериментальные выборки
- •§2. Измерение и шкалы
- •Упражнения
- •§ 3. Теория вероятности и статистические гипотезы.
- •Направленные гипотезы
- •Ненаправленные гипотезы
- •§ 4. Понятие уровня статистической значимости
- •§ 5. Первичная обработка данных.
- •Тема «Первичная обработка данных»
- •Упражнения
- •Обработка на компьютере: тема «Первичная обработка данных»
- •§ 6. ВторИчная обработка данных.
- •6.2. Квантили распределения.
- •6.3. Меры изменчивости (рассеивания, разброса).
- •6.4. Меры связи.
- •6.5. Нормальное распределение: определение и вариации.
- •90% Всех случаев располагается в диапазоне значений м±1,64σ;
- •95% Всех случаев располагается в диапазоне значений м±1,96σ;
- •99% Всех случаев располагается в диапазоне значений м±2,58σ.
- •6.6. Стандартизация экспериментальных показателей
- •6.7. Проверка нормальности распределения.
- •Алгоритм Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
- •Алгоритм Расчет критерия χ2
- •7. Статистические критерии различий.
- •Примеры проведенных исследований
- •1. Влияние процесса обучения на уровень самокритичности
- •2. Повышение способности к обучению учеников колледжа путем использования социально-психологического тренинга.
- •3. Влияние легкой физической нагрузки на работоспособность нервной системы.
Задачи
и
Упражнения

Порядковый номер испытуемого в списке (для его идентификации).
Количество вопросов в анкете как мера трудоемкости опроса.
Упорядочивание испытуемых по времени решения тестовой задачи.
Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории.
Академический статус (ассистент, доцент, профессор) как мера продвижения по службе.
Телефонные номера.
Время решения задачи.
Количество агрессивных реакций за рабочий день.
Количество агрессивных реакций за рабочий день как показатель агрессивности.
§ 3. Теория вероятности и статистические гипотезы.
Сущность проверки статистической гипотезы заключается в том, чтобы установить, согласуются ли экспериментальные данные и выдвинутая гипотеза, допустимо ли расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин? Таким образом, статистическая гипотеза это научная гипотеза, допускающая статистическую проверку, а математическая статистика это научная дисциплина задачей которой является научно обоснованная проверка статистических гипотез.
Полученные в экспериментах выборочные данные всегда ограничены и носят в значительной мере случайный характер. Именно поэтому для анализа таких данных и используется математическая статистика, позволяющая обобщать закономерности, полученные на выборке, и распространять их на всю генеральную совокупность.
Подчеркнем еще раз, что полученные в результате эксперимента на какой-либо выборке данные служат основанием для суждения о генеральной совокупности. Однако в силу действия случайных вероятностных причин оценка параметров генеральной совокупности, сделанная на основании экспериментальных (выборочных) данных, всегда будет сопровождаться погрешностью, и поэтому подобного рода оценки должны рассматриваться как предположительные, а не как окончательные утверждения. Подобные предположения о свойствах и параметрах генеральной совокупности получили название статистических гипотез. Как указывает Г.В. Суходольский: «Под статистической гипотезой обычно понимают формальное предположение о том, что сходство (или различие) некоторых параметрических или функциональных характеристик случайно или, наоборот, неслучайно».
Статистические гипотезы подразделяют на нулевые и альтернативные, направленные и ненаправленные.
Нулевая гипотеза - это гипотеза об отсутствии различий. Она обозначается как H0 и называется нулевой потому, что содержит число 0: X1- Х2=0, где X1, X2 - сопоставляемые значения признаков.
Нулевая гипотеза - это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий. Принято считать, что нулевая гипотеза — это гипотеза о сходстве.
Альтернативная гипотеза - это гипотеза о значимости различий. Она обозначается как H1.
Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой. Альтернативная гипотеза — гипотеза о различии.
Таким образом, принятие нулевой гипотезы свидетельствует об отсутствии различий, а гипотезы H1 - о наличии различий.
Бывают задачи, когда мы хотим доказать как раз незначимость различий, то есть подтвердить нулевую гипотезу. Например, если нам нужно убедиться, что разные испытуемые получают хотя и различные, но уравновешенные по трудности задания, или что экспериментальная и контрольная выборки не различаются между собой по каким-то значимым характеристикам. Однако чаще нам все-таки требуется доказать значимость различий, ибо они более информативны для нас в поиске нового. Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.