- •Федеральное агентство по образованию
- •Тульский государственный университет
- •Учебно-методическое пособие по дисциплине "Экспериментальная психология" тема «Основы измерения и количественного описания данных экспериментального исследования»
- •§1. Генеральная совокупность и экспериментальные выборки
- •§2. Измерение и шкалы
- •Упражнения
- •§ 3. Теория вероятности и статистические гипотезы.
- •Направленные гипотезы
- •Ненаправленные гипотезы
- •§ 4. Понятие уровня статистической значимости
- •§ 5. Первичная обработка данных.
- •Тема «Первичная обработка данных»
- •Упражнения
- •Обработка на компьютере: тема «Первичная обработка данных»
- •§ 6. ВторИчная обработка данных.
- •6.2. Квантили распределения.
- •6.3. Меры изменчивости (рассеивания, разброса).
- •6.4. Меры связи.
- •6.5. Нормальное распределение: определение и вариации.
- •90% Всех случаев располагается в диапазоне значений м±1,64σ;
- •95% Всех случаев располагается в диапазоне значений м±1,96σ;
- •99% Всех случаев располагается в диапазоне значений м±2,58σ.
- •6.6. Стандартизация экспериментальных показателей
- •6.7. Проверка нормальности распределения.
- •Алгоритм Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
- •Алгоритм Расчет критерия χ2
- •7. Статистические критерии различий.
- •Примеры проведенных исследований
- •1. Влияние процесса обучения на уровень самокритичности
- •2. Повышение способности к обучению учеников колледжа путем использования социально-психологического тренинга.
- •3. Влияние легкой физической нагрузки на работоспособность нервной системы.
Алгоритм Расчет критерия χ2
1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).
2. Рядом с каждой эмпирической частотой записать теоретическую частоту (второй столбец).
3. Подсчитать разности между эмпирической и теоретической частотой по каждому разряду (строке) и записать их в третий столбец.
4. Определить число степеней свободы по формуле:
ν=κ-1
где κ - количество разрядов признака.
Если ν=1, внести поправку на "непрерывность".
5. Возвести в квадрат полученные разности и занести их в четвертый столбец.
6. Разделить полученные квадраты разностей на теоретическую частоту и записать результаты в пятый столбец.
7. Просуммировать значения пятого столбца. Полученную сумму обозначить как χ2ЭМП.
8. Определить по таблице критические значения для данного числа степеней свободы V.
Если χ2эмп меньше критического значения, расхождения между распределениями статистически недостоверны.
Если χ2эмп равно критическому значению или превышает его, расхождения между распределениями статистически достоверны.
7. Статистические критерии различий.
Одной из наиболее часто встречающихся статистических задач, с которыми сталкивается психолог, является задача сравнения результатов обследования какого-либо психологического признака в разных условиях измерения (например, до и после определенного воздействия) или обследования контрольной и экспериментальной групп. Помимо этого нередко возникает необходимость оценить характер изменения того или иного психологического показателя в одной или нескольких группах в разные периоды времени или выявить динамику изменения этого показателя под влиянием экспериментальных воздействий. Для решения подобных задач используется достаточно большой набор статистических способов, называемых в наиболее общем виде критериями различий. Эти критерии позволяют оценить степень статистической достоверности различий между разнообразными показателями, измеренными согласно плану проведения психологического исследования. Важно учитывать, что уровень достоверности различий включается в план проведения эксперимента. Другими словами, исследователь при постановке экспериментальной задачи априори выбирает уровень достоверности различий (как правило, от 5% и выше в зависимости от особенностей решаемой задачи), который будет считаться приемлемым.
Существует достаточно большое количество критериев различий. Каждый из них имеет свою специфику, различаясь между собой по различным основаниям. Одним из таких оснований является тип измерительной шкалы, для которой предназначен тот или иной критерий. Например, с помощью некоторых критериев можно обрабатывать данные, полученные только в номинальных шкалах. Ряд критериев дает возможность обрабатывать данные, полученные в порядковой, интервальной и шкале отношений.
Критерии различаются также по максимальному объему выборки, который они могут охватить, а также и по количеству выборок, которые можно сравнивать между собой с их помощью. Так, существуют критерии, позволяющие оценить различия сразу в трех и большем числе выборок. Некоторые критерии позволяют сопоставлять неравные по численности выборки.
Еще одним признаком, дифференцирующим критерии, служит само качество выборки: она может быть связной (зависимой) или несвязной (независимой). Выборки также могут быть взяты из одной или нескольких генеральных совокупностей. Именно эта характеристика выборки служит наиболее важным основанием, по которому прежде всего выбираются критерии.
Кроме того, критерии различаются по мощности. Мощность критерия — это его способность выявлять различия или отклонять нулевую гипотезу, если она неверна. Напомним, что ошибке первого рода соответствует отказ от нулевой гипотезы. Можно сказать также, что мощность критерия характеризует его способность избегать ошибки второго рода.
Параметрические и непараметрические критерии
Все критерии различий условно подразделены на две группы: параметрические и непараметрические критерии.
Критерий различия называют параметрическим, если он основан на конкретном типе распределения генеральной совокупности (как правило, нормальном) или использует параметры этой совокупности (средние, дисперсии и т.д.). Критерии, включающие в формулу расчета параметры распределения, то есть средние и дисперсии (t - критерий Стьюдента, критерий F и др.).
Критерий различия называют непараметрическим, если он не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности. Поэтому для непараметрических критериев предлагается также использовать такой термин как «критерий, свободный от распределения». Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)
И те, и другие критерии имеют свои преимущества и недостатки.
ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ |
НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ |
1. Позволяют прямо оценить различия в средних, полученных в двух выборках (t - критерий Стьюдента). |
Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А встречаются более высокие, а в выборке Б - более низкие значения признака (критерии Q, U, φ и др.). |
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). |
Позволяют оценить лишь различия в диапазонах вариативности признака (критерий φ*). |
3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распределения признака. |
Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерии тенденций L и S). |
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). |
Эта возможность отсутствует. |
5. Экспериментальные данные должны отвечать двум, а иногда трем, условиям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. |
Экспериментальные данные могут не отвечать ни одному из этих условий: а) значения признака могут быть представлены в любой шкале, начиная от шкалы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсутствует. |
6. Математические расчеты довольно сложны. |
Математические расчеты по большей части просты и занимают мало времени (за исключением критериев χ2 и λ). |
7. Если условия, перечисленные в п.5, выполняются, параметрические критерии оказываются несколько более мощными, чем непараметрические. |
Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем параметрические, так как они менее чувствительны к «засорениям». |
Итак, при оценке различий в распределениях, далеких от нормального, непараметрические критерии могут выявить значимые различия, в то время как параметрические критерии таких различий не обнаружат. Важно отметить, что, во-первых, непараметрические критерии выявляют значимые различия и в том случае, если распределение близко к нормальному, во-вторых, при вычислениях вручную непараметрические критерии являются значительно менее трудоемкими, чем параметрические.
Рекомендации к выбору критерия различий:
* Прежде всего, следует определить, является ли выборка связной (зависимой) или несвязной (независимой).
* Следует определить однородность — неоднородность выборки.
* Затем следует оценить объем выборки и, зная ограничения каждого критерия по объему, выбрать соответствующий критерий.
* При этом целесообразнее всего начинать работу с выбора наименее трудоемкого критерия.
* Если используемый критерий не выявил различия — следует применить более мощный, но одновременно и более трудоемкий критерий.
* Если в распоряжении психолога имеется несколько критериев, то следует выбирать те из них, которые наиболее полно используют информацию, содержащуюся в экспериментальных данных.
* При малом объеме выборки следует увеличивать величину уровня значимости (не менее 1%), так как небольшая выборка и низкий уровень значимости приводят к увеличению вероятности принятия ошибочных решений.
Статистический критерий – это инструмент определения уровня статистической значимости. Как следует из логики проверки статистических гипотез, в качестве основы для применения статистических критериев используют теоретические распределения, для условия, когда верна нулевая гипотеза. Критерий также подразумевает формулу, позволяющую соотнести эмпирическое значение выборочной статистики с этим теоретическим распределением. Применяя эту формулу, исследователь вычисляет эмпирическое значение критерия. Полученное эмпирическое значение позволяет определить р-уровень — значение вероятности того, что нулевая статистическая гипотеза верна.
Помимо формулы эмпирического значения, критерий задает формулу для определения числа степеней свободы. Число степеней свободы (df)— это количество возможных направлений изменчивости признака. Как правило, число степеней свободы линейно зависит от объема выборки, от числа признаков или их градаций — чем больше эти показатели, тем больше число степеней свободы. В связи с тем, что для каждого случая определение df имеет свою специфику, сейчас подчеркнем лишь следующее. Каждая формула для расчета эмпирического значения критерия обязательно сопровождается правилом (формулой) для определения числа степеней свободы.
Назначение критерия — проверка статистической гипотезы путем определения р-уровня значимости (вероятности того, что Н0 верна).
Выбор критерия определяется проверяемой статистической гипотезой.
Критерий включает в себя:
формулу расчета эмпирического значения критерия по выборочным статистикам;
правило (формулу) определения числа степеней свободы;
теоретическое распределение для данного числа степеней свободы;
правило соотнесения эмпирического значения критерия с теоретическим распределением для определения вероятности того, что Н0 верна.
Применение «Таблицы критических значений критерия» позволяет определить значение р-уровня для данного числа степеней свободы. Таблица критических значений содержит значения (квантили) теоретического распределения, соответствующие наиболее важным — критическим значениям р-уровня (0,1; 0,05; 0,01 и т. д.) для различных чисел степеней свободы, Р-уровень значимости по вычисленному эмпирическому значению критерия при помощи таких таблиц определяется следующим образом. Для данного числа степеней свободы по таблице определяются ближайшие критические значения и р-уровни, им соответствующие. Далее значение р-уровня определяется в виде неравенства по правилу, которое демонстрируется на рис. (значимость возрастает слева направо, в соответствии с убыванием р-уровня):
- если эмпирическое значение критерия (Кэ) находится между двумя критическими значениями, то р-уровень меньше того критического р, которое находится левее;
- если Кэ находится левее крайнего левого критического значения (обычно это соответствует критическому р = 0,1, реже — р = 0,05), то р-уровень больше, чем крайнее правое критическое значение р;
- если Кэ находится правее крайнего правого критического значения, то р-уровень меньше крайнего правого критического р.
Д ля разных критериев возможны разные соотношения между р-уровнем и величиной критических его значений.
Например, если эмпирическое значение критерия (Кэ) находится между K0,05 и K0,01, то р < 0,05. Если Кэ находится левее К0,1, то р > 0,1. Если Кэ находится правее К0,001, то р < 0,001.
Приложение 1.
