Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМП Экпериментальная психология Перегудина В.А.doc
Скачиваний:
53
Добавлен:
01.05.2025
Размер:
645.82 Кб
Скачать

Алгоритм Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями

1. Занести в таблицу наименования разрядов и соответствующие им эмпирические частоты (первый столбец).

2. Подсчитать относительные эмпирические частоты (частости) для каждого разряда по формуле:

f*эмп=fэмп/n

где fэмп - эмпирическая частота по данному разряду;

п - общее количество наблюдений. Занести результаты во второй столбец.

3. Подсчитать накопленные эмпирические частости Σf*j по формуле:

где Σf*j=Σf*j-1+f*j - частость, накопленная на предыдущих разрядах; j - порядковый номер разряда; f*j- эмпирическая частость данного /-го разряда. Занести результаты в третий столбец таблицы.

4. Подсчитать накопленные теоретические частости для каждого разряда по формуле:

Σf*т jf*Т j-1+f*т j где Σf*т j-1 - теоретическая частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

f*т j - теоретическая частость данного разряда. Занести результаты в третий столбец таблицы.

5. Вычислить разности между эмпирическими и теоретическими накопленными частостями по каждому разряду (между значениями 3-го и 4-го столбцов).

6. Записать в пятый столбец абсолютные величины полученных раз­ностей, без их знака. Обозначить их как d.

7. Определить по пятому столбцу наибольшую абсолютную величину разности - dmax.

8. По таблице критических значений определить или рассчитать критические значения dmax для данного количества наблюдений n.

Если dmax равно критическому значению d или превышает его, различия между распределениями достоверны.

Оценка нормальности распределения эмпирических данных мо­жет осуществляться при помощи критерия согласия Пирсона, Хи-квадрат (χ2), который вычисляется по формуле:

χ2 = ∑(ni-ni0)2 / ni0

где: ni — частоты тестовых данных; ni0 — теоретические частоты.

Определяется вероятность соответствия практической частоты проявления признака (по показателям теста) с теоретическим рас­пределением (по специальным таблицам). Оценка распределения по χ2 на практике осуществляется при помощи компьютера.

В итоге исследования параметров распределения эмпирических дан­ных психолог может сделать по крайней мере два практических вывода:

  1. Распределение тестовых данных «близко» (или нет) к нормаль­ному теоретическому распределению и отсюда возможно примене­ние методов параметрической статистики.

  2. Тест хорошо (или слабо) дифференцирует испытуемых по структуре измеряемого свойства и в целом отражает (или нет) свойст­ва изучаемой популяции.

Назначения критерия

Критерий χ2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака.

Ограничения критерия

1. Объем выборки должен быть достаточно большим: п30. При п<30 критерий χ2 дает весьма приближенные значения. Точность крите­рия повышается при больших п.

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f>5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ2, не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5*7=35 обращений. Таким образом, если количество разрядов (k) задано заранее, как в данном случае, минимальное число наблюдений (nmin) определяется по формуле: nmin=k*5.

3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ2 уменьшается.

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду.

Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.