
- •Линейная алгебра
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
- •Дано уравнение кривой второго порядка: .
Записать уравнение геометрического места точек плоскости, для каждой из которых разность расстояний до точек V (-1; 1), W (1; -1) по абсолютной величине равна 2.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой 3x – 4y + 5 = 0;
г) построить кривую.
Вариант 20
Пусть А (8, 6), В (10, 5), С (5, 6) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.
Записать уравнение геометрического места точек, равноудаленных от точки F (1; 0) и прямой x = -1.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой x + 8y – 4 = 0;
г) построить кривую.
Вариант 21
Пусть А (7, 7), В (6, 5), С (3, 5) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.
Записать уравнение геометрического места точек, равноудаленных от точки F (0; 1,5) и прямой y = -1, 5.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой x – 5y + 5 = 0;
г) построить кривую.
Вариант 22
Пусть А (7, 2), В (2, 7), С (5, 0) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.
Записать уравнение геометрического места точек, равноудаленных от точки F (-2; 0) и прямой x = 2.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой x – 4y + 9 = 0;
г) построить кривую.
Вариант 23
Пусть А (10, 2), В (8, 4), С (6, 4) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.
Записать уравнение геометрического места точек, равноудаленных от точки F (0; -3) и прямой y = 3.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой 4x – y + 15 = 0;
г) построить кривую.
Вариант 24
Пусть А (9, 4), В (10, 10), С (5, 9) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.
Написать уравнение геметрического места точек, равноудаленных от точки М (2; 2) и от оси Ox.
Дано уравнение кривой второго порядка: .
а) привести уравнение к каноническому виду;
б) определить тип кривой, полуоси, эксцентриситет;
в) найти расстояние от центра кривой до прямой x – 7y + 1 = 0;
г) построить кривую.
Вариант 25
Пусть А (7, 4), В (10, 4), С (7, 8) - вершины треугольника АВС. Найти:
а) уравнение стороны ВС; б) уравнение медианы АМ; в) уравнение биссектрисы АД; г) уравнение высоты АН; д) площадь треугольника АВС.