
- •Вопрос 6. Централизованные асу тп
- •Вопрос 4. Асу тп. Типовые задачи асу тп. Функции и виды обеспечения асу тп.
- •Вопрос 5. Функциональная структура многоуровневой системы управления производством. Понятие cim пирамиды. Функц.Сх соврем су тп.
- •Вопрос 7. Распределенные системы управленияТп. Концепции построения и основные задачи рсу. Функционально-целевая и топологическая децентрализация тоу. Архитектура рсу. Структура ктс.
- •Основные задачи решаемые рсу:
- •Структура компонентов рсу
- •Вопрос 8. Основные функции scada систем. Требования к scada системам. Определение программной и аппаратной открытости компьютерных систем управления.
- •Вопрос 10. Технология автоматизации, основанная на применении полевой шины
- •Вопрос 11. Основные этапы проектирования асу тп. Задачи проектирования локальных аср тп. Понятия структуризации и характеризации. Жизненный цикл атк.
- •Вопрос 12. Системный анализ технологического процесса как оу (структура, особенности моделей и динамических характеристик).
- •Вопрос 13. Алгоритмы функционирования промышленных автоматических регуляторов. Обл нормальных и линейных режимов работы регуляторов.
- •Вопрос 14.15. Аналоговый регулятор с позиционным управляющим сигналом. Аналоговый регулятор с импульсным управляющим сигналом.
- •Вопрос 16. Дискретное представление уравнений непрерывных типовых регуляторов. Позиционный и скоростной алгоритмы.
- •Вопрос 17. Модификация дискретных алгоритмов типовых регуляторов.
- •Вопрос 19. Задача синтеза су на стадии тз. Классификация методов параметрического синтеза аср
- •Вопрос 20. Итерационные методы автоматизированной настройки действующих промышленных систем управления.
- •Вопрос 21. Расчет позиционных систем регулирования. Методика Клюева.
- •Вопрос 22. Аср с добавочными информационными каналами. Расчет систем со стабилизирующим регулятором.
- •Вопрос 23. Аср с добавочными информационными каналами. Расчет систем с дифференциатором.
- •Вопрос 24. Аср с добавочными информационными каналами. Расчет комбинированных систем.
- •Вопрос 29. Регулирование давления.
- •Вопрос 27. Регулирование расхода. Основные схемы аср
- •Вопрос 28. Регулирование уровня.
- •Вопрос 30. Регулирование рН.
- •2.Характеристика производственного предприятия и производственного процесса, как оу.
- •3. Производственное предприятие как су. Декомпозиция задачи управления предприятием..
- •31.Общие требования к системе паз
- •32. Информационный обмен данными в системах автоматизации.
- •26.С. Связанного регулир (автономные аср)
26.С. Связанного регулир (автономные аср)
Применяются дополнительные информационные каналы, благодаря которым внутренние перекрестные связи компенсируются внешними устройствами. Основой построения систем связанного регулирования является принцип автономности. Требование автономности: «путем введения дополнительных внешних связей между РО и соответствующей настройкой этих связей добиваются, чтобы регулирующее воздействие каждого регулятора оказывало влияние только на свою регулирующую величину и практически не влияло на остальные величины». В результате, объект с несколькими взаимно зависимыми регулируемыми величинами искусственно превращается в объект с независимыми (автономными) друг от друга регулируемыми величинами.
Если подобную задачу удается решить, то дальнейший расчет системы не представляет затруднений.
Введем
внешнее корректирующее устройство
Если
выполняется равенство
и
,
то
регулируемый объект можно формально
рассматривать как состоящий из двух
совершенно независимых регулирующих
участков с регулирующими воздействиями
и
.
Расчет системы проводим по аналогии с расчетом инвариантной системы:
1) определяются настроечные параметры 1-го и 2-го регулятора, обеспечивающие заданный запас устойчивости и, например, условие minmax; в результате находятся рез контуров регулирования;
2) определяются
параметры дополнительной корректирующей
связи
.
Т. к. во всем диапазоне частот выполнение равенства не удается, то решается задача только 0 = 0 и = рез (2 – го контура).
Для данного объекта ККС = 0, т. к. отсутствуют вторая перекрестная связь.
Конструктивно
дополнительная корректирующая связь
может быть реализована и другими
способами: выход корректирующего
устройства подается на вход регулятору
или на корректирующее устройство
поступает сигнал по рассогласованию
.
Рассмотрим объект управления с перекрестными связями по обоим каналам. Структурная схема система управления в этом случае имеет следующий вид:
Так как объект управления включает взаимно связанные регулируемые величины, то появляется W12(s), для компенсации влияния которой, вводим WД12(s).
Расчет системы и выбор динамических связей проводится аналогично предыдущему случаю.
Характерная особенность систем управления объектов со взаимносвязными регулируемыми величинами – появление дополнительных замкнутых на себя контуров преобразования сигнала. Система будет неустойчива, если хотя бы один из контуров будет неустойчивым. В рассматриваем случае, появился контур с положительной обратной связью.
При автоматизации сложных ТОУ приходится оценивать интенсивность взаимодействия подсистем. Оценка интенсивности взаимодействия подсистем позволяет систематизировать процедуру синтеза многосвязных АТК.
В результате анализа могут возникнуть следующие ситуации:
1). Для каждой управляемой выходной величины однозначно выбран управляющий параметр, матричная передаточная функция ТОУ диагональная либо квазидиагональная. матрица. В этом случае задача автоматизации решается с помощью набора автономных одноконтурных систем. Выбор управляющих воздействий производится на основе анализа функции чувствительности: ∂yi/∂μi = max.
2).Система автоматизации – многосвязная система управления.
3). Для каждого выхода нельзя однозначно выбрать управляющий вход или количество переменных управления не совпадает с количеством выходов. Решение задачи автоматизации выполняют ситуационные системы управления, в основе построения которых лежат логические алгоритмы, в том числе алгоритмы искусственного интеллекта.