Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар 5_1.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
92.16 Кб
Скачать

5. 2. Примеры, использующие отсечение

5. 2. 1. Вычисление максимума

Процедуру нахождения наибольшего из двух чисел можно запрограммировать в виде отношения

        mах( X, Y, Мах)

где  Мах = X,  если  Х  больше или равен   Y,  и  Мах  есть  Y,  если  Х   меньше  Y.  Это соответствует двум таким предложениям:

        mах( X, Y, X) :- Х >= Y.

        max( X, Y, Y) :- Х < Y.

Эти правила являются взаимно исключающими. Если выполняется первое, второе обязательно потерпит неудачу. Если неудачу терпит первое, второе обязательно должно выполниться. Поэтому возможна более экономная формулировка, использующая понятие "иначе":

        если Х >= Y, то Мах = X,

        иначе Мах = Y.

На Прологе это записывается при помощи отсечения:

        mах( X, Y, X) :- Х >= Y,  !.

        mах( X, Y, Y).

5. 2. 2. Процедура проверки принадлежности списку, дающая единственное решение

Для того, чтобы узнать, принадлежит ли Х списку L, мы пользовались отношением

        принадлежит( X, L)

Программа была следующей:

        принадлежит( X, [X | L] ).

        Принадлежит( X, [Y | L] ) :- принадлежит( X, L).

Эта программа дает "недетерминированный" ответ: если Х встречается в списке несколько раз, то будет найдено каждое его вхождение. Исправить этот недостаток не трудно: нужно только предотвратить дальнейший перебор сразу же после того, как будет найден первый X, а это произойдет, как только в первом предложении наступит успех. Измененная программа выглядит так:

        принадлежит( X, [X | L] ) :-   !.

        принадлежит( X, [Y | L] ) :- принадлежит( X, L).

5. 2. 3. Добавление элемента к списку, если он в нем отсутствует (добавление без дублирования)

Часто требуется добавлять элемент Х в список L только в том случае, когда в списке еще нет такого элемента. Если же Х уже есть в L, тогда L необходимо оставить без изменения, поскольку нам не нужны лишние дубликаты X. Отношение добавить имеет три аргумента:

        добавить( X, L, L1)

где Х - элемент, который нужно добавить, L - список, в который его нужно добавить, L1 - результирующий новый список. Правила добавления можно сформулировать так:

        если Х принадлежит к L, то L1 = L,         иначе L1 - это список L с добавленным к нему         элементом X.

Проще всего добавлять Х в начало списка L так, чтобы Х стал головой списка L1. Запрограммировать это можно так:

        добавить( X, L, L) :- принадлежит( X, L),  !.

        добавить( X, L, [X | L] ).

Поведение этой процедуры можно проиллюстрировать следующим примером:

        ?-  добавить( а, [b,с], L).

        L = [a, b, c]

        ?-  до6авить( X, [b, с], L).

        L = [b, с]         Х = b

        ?-  добавить( а, [b, с, X], L).

        L = [b, с, а]         Х = а

Этот пример поучителен, поскольку мы не можем легко запрограммировать "недублирующее добавление", не используя отсечения или какой-либо другой конструкции, полученной из него. Если мы уберем отсечение в только что рассмотренной программе, то отношение добавить будет добавлять дубликаты элементов, уже имеющихся в списке. Например:

        ?-  добавить( a, [a, b, c], L),

        L = [а, b, с]         L = [а, а, b, с]

Поэтому отсечение требуется здесь для правильного определения отношения, а не только для повышения эффективности. Этот момент иллюстрируется также и следующим примером.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]