Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар 3.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
143.36 Кб
Скачать

3. 2. 3. Добавление элемента

Наиболее простой способ добавить элемент в список - это вставить его в самое начало так, чтобы он стал его новой головой. Если Х - это новый элемент, а список, в который Х добавляется - L, тогда результирующий список - это просто

        [X | L]

Таким образом, для того, чтобы добавить новый элемент в начало списка, не надо использовать никакой процедуры. Тем не менее, если мы хотим определить такую процедуру в явном виде, то ее можно представить в форме такого факта:

        добавить( X, L, [X | L] ).

3. 2. 4. Удаление элемента

Удаление элемента Х из списка L можно запрограммировать в виде отношения

        удалить( X, L, L1)

где L1 совпадает со списком L, у которого удален элемент X. Отношение удалить можно определить аналогично отношению принадлежности. Имеем снова два случая:

(1)        Если Х является головой списка, тогда результатом удаления будет хвост этого списка.

(2)        Если Х находится в хвосте списка, тогда его нужно удалить оттуда.

        удалить( X, [X | Хвост], Хвост).

        удалить( X, [Y | Хвост], [ Y | Хвост1]  ) :-                удалить( X, Хвост, Хвост1).

как и принадлежит, отношение удалить по природе своей недетерминировано. Если в списке встречается несколько вхождений элемента X, то удалить сможет исключить их все при помощи возвратов. Конечно, вычисление по каждой альтернативе будет удалять лишь одно вхождение X, оставляя остальные в неприкосновенности. Например:

        ?- удалить( а, [а, b, а, а], L].

        L = [b, а, а];         L = [а, b, а];         L = [а, b, а];

        nо                 (нет)

При попытке исключить элемент, не содержащийся в списке, отношение удалить потерпит неудачу.

Отношение удалить можно использовать в обратном направлении для того, чтобы добавлять элементы в список, вставляя их в произвольные места. Например, если мы хотим во все возможные места списка [1, 2, 3]  вставить атом а,  то мы можем это сделать, задав вопрос: "Каким должен быть список L, чтобы после удаления из него элемента а   получился список  [1, 2, 3]?"

        ?- удалить( а, L, [1, 2, 3] ).

        L = [а, 1, 2, 3];         L = [1, а, 2, 3];         L = [1, 2, а, 3];         L = [1, 2, 3, а];

        nо                     (нет)

Вообще операция по внесению Х в произвольное место некоторого списка Список, дающее в результате БольшийСписок, может быть определена предложением:

        внести( X, Список, БольшийСписок) :-               удалить( X, БольшийСписок, Список).

В принадлежит1 мы изящно реализовали отношение принадлежности через конк. Для проверки на принадлежность можно также использовать и удалить. Идея простая: некоторый Х принадлежит списку Список, если Х можно из него удалить:

        принадлежит2( X, Список) :-                удалить( X, Список, _ ).

3. 2. 5. Подсписок

Рассмотрим теперь отношение подсписок. Это отношение имеет два аргумента - список L и список S, такой, что S содержится в L в качестве подсписка. Так отношение

        подсписок( [c, d, e], [a, b, c, d, e, f] )

имеет место, а отношение

        подсписок( [c, e], [a, b, c, d, e, f] )

нет. Пролог-программа для отношения подсписок может основываться на той же идее, что и принадлежит1, только на этот раз отношение более общо (см. рис. 3.4).

Рис. 3. 4.  Отношения принадлежит и подсписок.

Его можно сформулировать так:

    S является подсписком L, если

    (1)        L можно разбить на два списка L1 и L2 и

    (2)        L2 можно разбить на два списка S и L3.

Как мы видели раньше, отношение конк можно использовать для разбиения списков. Поэтому вышеприведенную формулировку можно выразить на Прологе так:

        подсписок( S, L) :-                  конк( L1, L2, L),                  конк( S, L3, L2).

Ясно, что процедуру подсписок можно гибко использовать различными способами. Хотя она предназначалась для проверки, является ли какой-либо список подсписком другого, ее можно использовать, например, для нахождения всех подсписков данного списка:

        ?-  подсписок( S, [а, b, с] ).

        S = [ ];         S = [a];         S = [а, b];         S = [а, b, с];         S = [b];         . . .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]