Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник / ztm17.doc
Скачиваний:
62
Добавлен:
27.05.2014
Размер:
551.42 Кб
Скачать

31.5. Рядовые примеры на применение метода кинетостатики

К давлению автомобиля на мост

ПРИМЕР 31.1.- Давление автомобиля на мост

Дано. – Автомобиль, весом кН, дви-жется по выпуклому мосту радиуса м со скоростью км/час (см. рис.31.5).

Требуется.- Определить его давление на мост.

Р

Рисунок 31.5

ешение.- По закону равенства действия и противодействия давление автомобиля является силой противоположной суммарной нормальной реакции моста на автомобиль.

Поэтому определим , для чего записываем

условие динамического равновесия - - и проектируем его на вертикальную ось:

кН.

Итак, несмотря на то, что автомобиль весит кН, он по причине выпуклости моста и относительно большой скорости движения по нему, производит в раз меньшее давление.

О

К действующей на лётчика перегрузке

тветьте на вопрос: «Если мост вогнутый, то с целью минимизации нагрузки на него, что целесообразно делать»?

ПРИМЕР 31.2.- Действующая на лётчика перегрузка

Дано. – Лётчик-испытатель летит по кругу радиуса км со скоростью км/час - см. рис.31.6, где изображены главный вид и вид сверху.

Т

Рисунок 31.6

ребуется.- Определить действующую на лётчика перегрузку. Под перегрузкой понимают отношение модуля действующей на пилота реакции кресла к его весу , т.е. требуется определить .

286

Решение.- Как и в предыдущем примере - .

Получающийся силовой треугольник прямоугольный. Поэтому:

.

Откуда: .

Реакции на балку с лебёдкой

ПРИМЕР 31.3.- Балка с лебёдкой на двух опорах

Д

31.9

ано. – Балка, длиной , расположена на двух опорах. На ней посередине установлена лебёдка (см. рис.31.7). Веса: балки с лебёдкой - ; поднимаемого груза - . Радиус барабана лебёдки - . При включении двигателя ротор вращается с угловым ускорением ; его момент инерции совместно с барабаном лебёдки относительно оси вращения - .

Требуется.– Составить алгоритм решения задачи по определению реакций на опорах балки с учётом динамических нагрузок.

Р

Рисунок 31.7

ешение.- Модуль силы инерции груза: .

Момент от сил инерции ротора двигателя и барабана лебёдки: .

Теперь, действуя как в статике, составляем уравнения моментов относительно точек , и из них определяем реакции на опорах - и :

287

31.6. Понятие о центре удара

Р

Центр удара на примере мишени для стрельбы

едко, но встречаются устройства в виде тел с осями вращения, на которые действуют ударные нагрузки. Таким, например, является маятниковый копёр для проведения испытаний материалов на ударную вязкость (с чем будущие инженеры встретятся при изучении курса сопротивления материалов).

Ударные нагрузки могут оказаться источником трясений зданий, оборудования, приборов. Нужно проек-тировать так, чтобы передаваемые через оси вращения на корпуса и далее на фундаменты, ударные нагрузки в идеале равнялись нулю. И это удаётся делать.

Центр удара – это точка вращательно закреплённого тела, при приложении к которой ударная сила не вызывает реакций в опорах.

Р

Рисунок 31.8

ассмотрим это интересное явление на примере мишени, предназначенной для проведения экспериментальных работ со стрелковым оружием – см. рис.8.

Считаем, что она выполнена в форме однородной прямоугольной плиты.

- центр масс мишени (расположен на пересечении диагоналей). В результате приложения к точке ударной силы , плита приобретает угловое ускорение ; - соответствующее ему касательное ускорение центра масс. Кроме силы на мишень действуют (при неправильном проектировании) реак-ции опор (на рисунке не изображены) и распределённые по ней силы инерции.

Т.к. , то учитываем лишь силы инерции от касательных составляющих ускорений; их интенсивность распределена по треугольному закону - - и приводятся они, поэтому, к равнодействующей , расположенной на оси на расстоянии двух третей от .

Условие отсутствия реакций (от ударной силы) в подшипниках определяем через составление и решение двух уравнений динамического равновесия:

; .

Откуда

288

Соседние файлы в папке Учебник