- •Основные понятия бд и субд. Отличие понятий банк данных и база данных.
- •История возникновения понятия базы данных.
- •Цели и задачи субд.
- •Организация безопасности данных в базе данных.
- •Основные функции и классификация субд.
- •Модели и типы данных.
- •Иерархическая модель. Достоинства и недостатки данной модели.
- •Понятие сбалансированные и двоичные «деревья».
- •Сетевая модель. Достоинства и недостатки данной модели
- •Простые и сложные сетевые структуры. ??????
- •Реляционная модель. Достоинства и недостатки данной модели.
- •Основные правила э.Кодда для реляционной бд.
- •Механизм управления транзакциями.
- •Постреляционная модель. Достоинства и недостатки данной модели.
- •Многомерная модель. Достоинства и недостатки данной модели.
- •16. Основные понятия, используемые в многомерных субд: агрегируемость, историчность и прогнозируемость данных.
- •17. Представление данных в многомерной модели: куб, ячейка.
- •18. Гиперкубическая и поликубическая схемы.
- •19. Формирование «среза», «вращение», агрегация и детализация.
- •20,21,22. Объектно – ориентированные субд. Достоинства и недостатки.
- •23. Базовые понятия реляционных баз данных.
- •25. Свойства отношений.
- •26. Нормальные формы отношений.
- •27. Этапы разработки баз данных.
- •I этап. Постановка задачи.
- •II этап. Анализ объекта.
- •III этап. Синтез модели.
- •IV этап. Выбор способов представления информации и программного инструментария.
- •V этап. Синтез компьютерной модели объекта.
- •VI этап. Работа с созданной базой данных.
- •28. Первая нормальная форма (1нф).
- •29. Вторая нормальная форма (2нф).
- •30. Третья нормальная форма (3нф).
- •31. Алгоритм нормализации (приведение к 3нф).
- •32. Анализ критериев для нормализованных и ненормализованных моделей данных.
- •33.Oltp и olap-системы
- •34. Нормальные формы более высоких порядков
- •5Нф (Пятая Нормальная Форма)
- •35.Элементы модели "сущность-связь"
- •36.Семантическое моделирование
- •37.Основные понятия er-диаграмм
- •38.Типы связи сущность-связь
- •39.Модальность связи
- •40. Концептуальные и физические er – модели.
- •41. Элементы языка sql.
- •42. Операторы определения объектов базы данных Операторы ddl (Data Definition Language) - операторы определения объектов базы данных
- •43. Операторы манипулирования данными.
- •44. Операторы защиты и управления данными.
- •45. Транзакции и целостность баз данных.
5Нф (Пятая Нормальная Форма)
Функциональные и многозначные зависимости позволяют произвести декомпозицию исходного отношения без потерь на две проекции. Можно, однако, привести примеры отношений, которые нельзя декомпозировать без потерь ни на какие две проекции.
Пример 3. Рассмотрим следующее отношение :
X Y Z
1 1 2
1 2 1
2 1 1
1 1 1
Таблица 14 Отношение R
Всевозможные проекции отношения , включающие по два атрибута, имеют вид:
X Y
1 1
1 2
2 1
Таблица 15 Проекция R1=R[X,Y]
X Z
1 2
1 1
2 1
Таблица 16 Проекция R2=R[X,Z]
Y Z
1 2
2 1
1 1
Таблица 17 Проекция R3=R[Y,Z]
Как легко заметить, отношение не восстанавливается ни по одному из попарных соединений , или . Действительно, соединение имеет вид:
X Y Z
1 1 2
1 1 1
1 2 2
1 2 1
2 1 1
Таблица 18 R1 JOIN R2
Определение 5. Пусть является отношением, а , , …, - произвольными (возможно пересекающимися) подмножествами множества атрибутов отношения . Тогда отношение удовлетворяет зависимости соединения
тогда и только тогда, когда оно равносильно соединению всех своих проекций с подмножествами атрибутов , , …, , т.е.
.
Можно предположить, что отношение в примере 3 удовлетворяет следующей зависимости соединения:
.
Утверждать, что это именно так мы пока не можем, т.к. определение зависимости соединения должно выполняться для любого состояния отношения , а не только для состояния, приведенного в примере.
Определение 6. Зависимость соединения называется нетривиальной зависимостью соединения, если выполняется два условия:
-Одно из множеств атрибутов не содержит потенциального ключа отношения .
-Ни одно из множеств атрибутов не совпадает со всем множеством атрибутов отношения .
35.Элементы модели "сущность-связь"
Моделирование структуры базы данных при помощи алгоритма нормализации, описанного в предыдущих главах, имеет серьезные недостатки:
Первоначальное размещение всех атрибутов в одном отношении является очень неестественной операцией. Интуитивно разработчик сразу проектирует несколько отношений в соответствии с обнаруженными сущностями. Даже если совершить насилие над собой и создать одно или несколько отношений, включив в них все предполагаемые атрибуты, то совершенно неясен смысл полученного отношения.
Невозможно сразу определить полный список атрибутов. Пользователи имеют привычку называть разными именами одни и те же вещи или наоборот, называть одними именами разные вещи.
Для проведения процедуры нормализации необходимо выделить зависимости атрибутов, что тоже очень нелегко, т.к. необходимо явно выписать все зависимости, даже те, которые являются очевидными.
36.Семантическое моделирование
В реальном проектировании структуры базы данных применяются другой метод - так называемое, семантическое моделирование. Семантическое моделирование представляет собой моделирование структуры данных, опираясь на смысл этих данных. В качестве инструмента семантического моделирования используются различные варианты диаграмм сущность-связь (ER - Entity-Relationship).
Первый вариант модели сущность-связь был предложен в 1976 г. Питером Пин-Шэн Ченом [37]. В дальнейшем многими авторами были разработаны свои варианты подобных моделей (нотация Мартина, нотация IDEF1X, нотация Баркера и др.). Кроме того, различные программные средства, реализующие одну и ту же нотацию, могут отличаться своими возможностями. По сути, все варианты диаграмм сущность-связь исходят из одной идеи - рисунок всегда нагляднее текстового описания. Все такие диаграммы используют графическое изображение сущностей предметной области, их свойств (атрибутов), и взаимосвязей между сущностями.
