Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаба№4 Комплексные соединения.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
104.96 Кб
Скачать

Минобрнауки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»

Факультет информационно-измерительных и биотехнических систем

Кафедра физической химии

Лабораторная работа № 4

по курсу «Химия»

Комплексные соединения

Выполнил студент группы 2193: Падусев Д.А.

Проверил: Кириллова С.А.

Санкт-Петербург

2013

Цель работы: Ознакомление со свойствами комплексных соединений, способами их получения и устойчивостью в растворах. Получение навыков составления реакций с участием комплексных соединений

Краткое содержание работы:

Строение комплексных соединений

Строение комплексных соединений и их поведение в растворах объясняет координационная теория, созданная в конце ХIХ века швейцарским химиком Альфредом Вернером. Соединения такого типа, как BF3, CH4, NH3, H2O, CO2 и др., в которых элемент проявляет свою обычную валентность, называются валентнонасыщенными соединениями или соединениями первого порядка. При взаимодействии соединений первого порядка друг с другом получаются соединения высшего порядка (гидраты, аммиакаты, продукты присоединения кислот, органических молекул, двойные соли и многие другие).

CoCl3 + 6NH3 = CoCl3 . 6NH3 или [Co(NH3)6]Cl3

BF3 + HF = BF3 . HF или H[BF4]

Fe(CN)3 + 3KCN = Fe(CN)3 . 3KCN или K3[Fe(CN)6]

Согласно теории Вернера, любой элемент после насыщения его обычных валентностей способен проявлять ещё и дополнительную валентность – координационную. Именно за счёт этой валентности и происходит образование соединений высшего порядка – комплексных соединений.

В каждом комплексном соединении различают внутреннюю и внешнюю сферы. Более тесно связанные частицы внутренней сферы называют комплексным ионом или комплексом (заключают в квадратные скобки).

Центральный ион или атом внутренней сферы комплекса, вокруг которого группируются ионы или молекулы, называется комплексообразователем или ядром комплекса, а координируемые им во внутренней сфере ионы или молекулы – лигандами или аддендами. Роль комплексообразователей чаще всего выполняют катионы переходных металлов, реже анионы или нейтральные атомы, имеющие вакантные орбитали. Примерами лигандов могут служить анионы: Г-, OH-, CN-, CNS-, NO2-, CO32-, C2O42-; нейтральные молекулы: Н2О, NH3, CO, NO, Г2, N2H4, NH2-CH2-CH2-NH2(этилендиамин), аминоуксусная кислота NH2-CH2-COOH. Координационное число (К.Ч.) или координационная валентность – общее количество лигандов, входящих во внутреннюю сферу комплекса. Известны координационные числа 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще других встречаются 4, 6 и 2. Эти числа соответствуют наиболее симметричной геометрической конфигурации комплекса – октаэдрической (6), тетраэдрической (4) и линейной (2). Координационная валентность зависит от природы комплексообразователя и лигандов, от степени окисления комплексообразователя, от соотношения размеров комплексообразователя и лигандов, концентрации раствора комплексного соединения.

Чем выше степень окисления комплексообразователя, тем больше координационное число: [Cu+(NH3)2]+, но [Cu2+(NH3)4]2+.

Незаряженные лиганды обычно присоединяются к комплексообразователю в большем числе, чем заряженные: [Сo(H2O)6]2+, но [СoCl4]2.-.

Например, с ионами Cl-, Br-, I- алюминий проявляет К.Ч. 4, а с меньшим ионом F- - 6: K[AlCl4], но K3[AlF6].