- •П.Н. Девянин, о.О. Михальский, д.И. Правиков, а.Ю. Щербаков Теоретические основы компьютерной безопасности
- •Глава 1 структура теории компьютерной безопасности 8
- •Глава 2 методология построения систем защиты информации в ас 22
- •Глава 3 политика безопасности 72
- •Глава 4 модели безопасности 95
- •Глава 5 основные критерии защищенности ас. Классификация систем защиты ас 123
- •Введение
- •Глава 1структура теории компьютерной безопасности
- •1.1Основные понятия и определения
- •1.2 Анализ угроз информационной безопасности
- •1.3 Структуризация методов обеспечения информационной безопасности
- •1.4 Основные методы реализации угроз информационной безопасности
- •1.5Основные принципы обеспечения информационной безопасности в ас
- •1.6Причины, виды и каналы утечки информации
- •Глава 2методология построения систем защиты информации в ас
- •2.1 Построение систем защиты от угрозы нарушения конфиденциальности информации Организационно-режимные меры защиты носителей информации в ас
- •Передача пароля по сети
- •Криптографические методы защиты
- •Утечки информации по техническим каналам:
- •Требования к скзи
- •Требования надежности
- •Требования к средам разработки, изготовления и функционирования скзи.
- •Криптографическая защита транспортного уровня ас
- •Криптографическая защита на прикладном уровне ас
- •Особенности сертификации и стандартизации криптографических средств
- •Защита от угрозы нарушения конфиденциальности на уровне содержания информации
- •2.2Построение систем защиты от угрозы нарушения целостности информации Организационно-технологические меры защиты целостности информации на машинных носителях
- •Модель контроля целостности Кларка-Вилсона
- •Защита памяти
- •Барьерные адреса
- •Динамические области памяти
- •Адресные регистры
- •Страницы и сегменты памяти
- •Цифровая подпись
- •Защита от угрозы нарушения целостности информации на уровне содержания
- •2.3 Построение систем защиты от угрозы отказа доступа к информации
- •Защита от сбоев программно-аппаратной среды
- •Обеспечение отказоустойчивости по ас
- •Предотвращение неисправностей в по ac
- •Защита семантического анализа и актуальности информации
- •2.4 Построение систем защиты от угрозы раскрытия параметров информационной системы
- •2.5 Методология построения защищенных ас
- •Иерархический метод разработки по ас
- •Исследование корректности реализации и верификация ас
- •Теория безопасных систем (тсв)
- •Список литературы к главе 2
- •Глава 3политика безопасности
- •3.1 Понятие политики безопасности
- •3.2 Понятия доступа и монитора безопасности
- •3.3 Основные типы политики безопасности
- •3.4 Разработка и реализация политики безопасности
- •3.5Домены безопасности
- •Список литературы к главе 3
- •Глава 4модели безопасности
- •4.1 Модель матрицы доступов hru Основные положения модели
- •Безопасность системы
- •4.2 Модель распространения прав доступа take-grant Основные положения модели
- •Возможность похищения прав доступа
- •Расширенная модель Take-Grant
- •4.3 Модель системы безопасности белла-лападула Основные положения модели
- •Пример некорректного определения безопасности в модели бл
- •Эквивалентные подходы к определению безопасности в модели бл
- •Подход Read-Write (rw)
- •Подход Transaction (т)
- •Проблемы использования модели бл
- •Модель Low-Water-Mark
- •4.4Модель безопасности информационных потоков
- •Пример автоматной модели системы защиты gm
- •Список литературы к главе 4
- •Глава 5основные критерии защищенности ас. Классификация систем защиты ас
- •5.1Руководящие документы государственной технической комиссии россии
- •5.2 Критерии оценки безопасности компьютерных систем министерства обороны сша ("оранжевая книга")
- •Глава 5 Основные критерии защищенности ас. Классификация систем
- •Демонстрационный материал к учебной теме “Криптосистема rsa” Введение
- •Системные требования
- •Описание программы
Криптографические методы защиты
При построении защищенных АС роль криптографических методов для решения различных задач информационной безопасности трудно переоценить. Криптографические методы в настоящее время являются базовыми для обеспечения надежной аутентификации сторон информационного обмена, защиты информации в транспортной подсистеме АС, подтверждения целостности объектов АС и т.д.
К средствам криптографической защиты информации (СКЗИ) относятся аппаратные, программно-аппаратные и программные средства, реализующие криптографические алгоритмы преобразования информации с целью:
• защиты информации при ее обработке, хранении и передаче по транспортной среде АС;
• обеспечения достоверности и целостности информации (в том числе с использованием алгоритмов цифровой подписи) при ее обработке, хранении и передаче по транспортной среде АС;
• выработки информации, используемой для идентификации и аутентификации субъектов, пользователей и устройств;
• выработки информации, используемой для защиты аутентифицирую-щих элементов защищенной АС при их выработке, хранении, обработке и передаче.
Предполагается, что СКЗИ используются в некоторой АС (в ряде источников-информационно-телекоммуникационной системе или сети связи), совместно с механизмами реализации и гарантирования политики безопасности.
Не останавливаясь детально на определении криптографического преобразования, отметим его несколько существенных особенностей:
• в СКЗИ реализован некоторый алгоритм преобразования информации (шифрование, электронная цифровая подпись, контроль целостности и ДР.);
• входные и выходные аргументы криптографического преобразования присутствуют в АС в некоторой материальной форме (объекты АС);
• СКЗИ для работы использует некоторую конфиденциальную информацию (ключи);
• алгоритм криптографического преобразования реализован в виде некоторого материального объекта, взаимодействующего с окружающей средой (в том числе с субъектами и объектами защищенной АС).
Таким образом, роль СКЗИ в защищенной АС-преобразование объектов. В каждом конкретном случае указанное преобразование имеет особенности. Так, процедура зашифрования использует как входные параметры объект-открытый текст и объект-ключ, результатом преобразования является объект-шифрованный текст; наоборот, процедура расшифрования использует как входные параметры шифрованный текст и ключ;
процедура простановки цифровой подписи использует как входные параметры объект-сообщение и объект-секретный ключ подписи, результатом работы цифровой подписи является объект-подпись, как правило, интегрированный в объект-сообщение.
Можно говорить о том, что СКЗИ производит защиту объектов на семантическом уровне. В то же время объекты-параметры криптографического преобразования являются полноценными объектами АС и могут быть объектами некоторой политики безопасности (например, ключи шифрования могут и должны быть защищены от НСД, открытые ключи для проверки цифровой подписи-от изменений и т.д.).
Итак, СКЗИ в составе защищенных АС имеют конкретную реализацию-это может быть отдельное специализированное устройство, встраиваемое в компьютер, либо специализированная программа.
Существенно важными являются следующие моменты:
• СКЗИ обменивается информацией с внешней средой, а именно: в неге' вводятся ключи, открытый текст при шифровании;
• СКЗИ в случае аппаратной реализации использует элементную базу ограниченной надежности (т.е. в деталях, составляющих СКЗИ возможны неисправности или отказы);
• СКЗИ в случае программной реализации выполняется на процессоре ограниченной надежности и в программной среде, содержащей посторонние программы, которые могут повлиять на различные этапы его работы;
• СКЗИ хранится на материальном носителе (в случае программной реализации) и может быть при хранении преднамеренно или случайно искажено;
• СКЗИ взаимодействует с внешней средой косвенным образом (питается от электросети, излучает электромагнитные поля и т.д.);
• СКЗИ изготавливает или/и использует человек, могущий допустить ошибки (преднамеренные или случайные) при разработке и эксплуатации. Таким образом, можно выделить ряд основных причин нарушения
безопасности информации при ее обработке СКЗИ.
