
11.2 Типы симметрий
Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научных определений. До появления идеи симметрии математика, физика, естествознание в целом напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира. В качестве одной из основных тенденций этого процесса выступает математизация научного знания.
Симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира, всех его составляющих. Симметрия обладает многоплановым и многоуровневым характером. Например, в системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике – при описании геометрических объектов. Симметрия может быть классифицирована как:
структурная;
геометрическая;
динамическая, описывающая соответственно кристаллографический, математический и физический аспекты данного понятия.
Простейшие симметрии представимы геометрически в нашем обычном трехмерном пространстве и потому наглядны. Такие симметрии связаны с геометрическими операциями, которые приводят рассматриваемое тело к совпадению с самим собой. Говорят, что симметрия проявляется в неизменности (инвариантности) тела или системы по отношению к определенной операции. Например, сфера (без каких-либо меток на ее поверхности) инвариантна относительно любого поворота. В этом проявляется ее симметричность. Сфера с меткой, например, в виде точки, совпадает сама с собой лишь при повороте, после которого в исходное положение попадает метка на ней. Наше трехмерное пространство изотропно. Это означает, что как и сфера без меток, оно совпадает с самим собой при любом повороте. Пространство неразрывно связано с материей. Поэтому наша Вселенная также изотропна. Пространство кроме того однородно. Это означает, что оно (и наша Вселенная) обладает симметрией относительно операции сдвига. Той же симметрией обладает и время.
Кроме простых (геометрических) симметрий в физике широко встречаются весьма сложные, так называемые динамические симметрии, то есть симметрии, связанные не с пространством и временем, а с определенным типом взаимодействий. Они не являются наглядными, и даже простейшие из них, например, так называемые калибровочные симметрии, затруднительно пояснить без использования довольно сложной физической теории. Калибровочным симметриям в физике также отвечают некоторые законы сохранения. Например, калибровочная симметрия электромагнитных потенциалов приводит к закону сохранения электрического заряда.
В ходе общественной практики человечество накопило много фактов, свидетельствующих как о строгой упорядоченности, равновесии между частями целого, так и о нарушениях этой упорядоченности. В этой связи можно выделить следующие пять категорий симметрии:
симметрия;
асимметрия;
дисимметрия;
антисимметрия;
суперсимметрия.