
- •Глава шестая
- •Характеристика козловых кранов для монтажа котельных агрегатов
- •Мостовые краны котельных отделений тэс
- •Техническая характеристика подферменных кранов
- •Башенные краны, используемые для монтажа котельного оборудования
- •Характеристика полукозловых кранов
- •Козловые краны для складов и площадок сборки блоков оборудования
- •Краны на пневмоколесном ходу
- •Краны стреловые на железнодорожном ходу
- •Краны на гусеничном ходу для монтажа оборудования
- •Грузоподъемность кранов машинного зала для агрегатов до 50 тыс. КВт
Глава шестая
МЕХАНИЗАЦИЯ МОНТАЖА ОБОРУДОВАНИЯ
6.1. КОМПЛЕКСНАЯ МЕХАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ
Основным направлением развития механизации является широкое внедрение комплексной механизации монтажных работ, переход к которой стал возможен на современном этапе, когда значительно расширилась номенклатура и выпуск монтажных и сварочных машин и механизмов, средств малой механизации и механизированного инструмента. Это обеспечивает возможность широкого выбора машин и формирование их в комплекты, необходимые для механизированного выполнения всех технологических процессов данного вида монтажных работ. При определении работ, выполняемых механизированными и комплексно-механизированными способами, необходимо учитывать следующее.
Механизированными считаются работы, выполненные при помощи машин и механизмов, имеющий механический, электрический или пневматический привод. Под механизированным способом монтажа имеется в виду такой процесс, при котором из всех операций по монтажу только подъем и установка конструкций на месте осуществляется механизмами (кранами).
При комплексной механизации монтажных работ все основные процессы (разгрузка прибывшего оборудования, погрузка на транспортные средства, укрупнительная сборка, перевозка к месту монтажа, подъем и установка на место) выполняются машинами и механизмами без применения ручного труда.
Комплексная механизация должна осуществляться как при выполнении отдельных видов монтажа оборудования, конструкций, так и при выполнении комплекса сварочных и других работ.
Выбор способов и средств осуществления комплексной механизации (автоматизации) данного вида работ производятся на основании технико-экономических расчетов.
Одним из условий комплексной механизации монтажных работ является создание разных механизмов и машин, взаимосвязанных между собой по производительности, режимам и графикам работы, дополняющих друг друга в выполнении механизации отдельных монтажных процессов.
Оснащенность монтажных организаций средствами механизации определяется показателями механовооруженности и электровооруженности.
Механовооруженность монтажной организации определяется выращенным в процентах отношением балансовой стоимости используемых на монтаже машин, установок и механизмов к общему объему строительно-монтажных работ.
Механовооруженность рабочих определяется балансовой стоимостью используемых на монтаже машин, установок и механизмов, приходящихся на 1 рабочего, занятого на выполнении монтажных работ.
Энерговооруженность монтажной организации определяется общей установленной мощностью двигателей, используемых на монтаже машин, установок, механизмов и сварочных аппаратов ( в кВт), приходящейся на 1 млн. руб. строительно-монтажных работ.
Энерговооруженность рабочих определяется общей установленной мощностью двигателей, используемых на монтаже машин, установок, механизмов и сварочных аппаратов ( в кВт), приходящейся на 1 рабочего, занятого на выполнении монтажных работ.
Механовооруженность может определяться с учетом транспортных средств и без их учета.
Показатели механовооруженности и энерговооруженности для тепломонтажных работ не могут быть сравнимы с аналогичными показателями других монтажных организаций, так как при монтаже тепломеханического оборудования используется не находящееся на балансе монтажных организаций большое количество грузоподъемных механизмов (эксплуатационные и строительные краны), которые не учитываются этими показателями. Использование же эксплуатационных и строительных грузоподъемных механизмов оказывает существенное влияние на показатели механизации монтажных работ, в связи с чем мощность двигателей этих механизмов следует также учитывать при определении показателя энерговооруженности, а балансовую стоимость механизмов – при определении показателей механовооруженности монтажных работ и рабочих.
Одним из показателей механизации строительно-монтажных работ является степень охвата механизацией или коэффициент механизации работ, определяемый процентным отношением объема работ, выполняемых механизированным способом, к общему объему данного вида работ, выполняемых с помощью машин и вручную на данной площадке.
Важным показателем механизации монтажных работ является коэффициент механизации труда, определяемый отношением количества рабочих, занятых на механизированных процессах (или отработанного ими времени), к общему количеству рабочих (или к отработанному ими времени), занятых как на механизированных, так и на ручных процессах монтажа (рис. 6.1):
,
где Км.т. – коэффициент механизации труда, %; Р – количество рабочих, чел., или отработанное время на механизированных работах, чел-дни; Робщ – общее количество рабочих, занятых на монтаже, чел (или общее отработанное время, чел-дни).
Рис. 6.1. Коэффициент механизации труда, %.
Процессы монтажа оборудования сборки, установки и пригонки узлов и деталей между собой в условиях монтажной площадки не поддаются полной механизации, и поэтому количество работающих вручную является достаточно большим (по отношению к общему числу рабочих); в связи с этим коэффициент механизации труда всегда будет меньше единицы.
Для осуществления комплексной механизации монтажа оборудования необходимо оснастить монтажные участки средствами для механизации слесарно-сборочных и пригоночных операций и добиться выполнения малообъемных работ машинами малой механизации и механизированным инструментом.
К с р е д с т в а м м а л о й м е х а н и з а ц и и относятся все переносные механизмы, машинки, приборы и инструменты, снабженные механическими приводами мощностью свыше 1,0 кВт.
К м е х а н и з и р о в а н н о м у и н с т р у м е н т у относятся переносные приборы и агрегаты, приводимые в действие двигателями мощностью от 0,1 до 1,0 кВт и заменяющие ручной инструмент.
За последние годы получили широкое внедрение средства малой механизации и механизированный инструмент с электроприводом. Одновременно расширилось применение средств малой механизации и инструмента с пневматическим приводом. В тех случаях, когда имеется возможность организовать непрерывную работу компрессорных установок, эти инструменты могут успешно использоваться в условиях монтажной площадки.
Выбор типа и потребное количество средств малой механизации и механизированного инструмента определяется при разработке проекта производства работ в зависимости от объемов работ и характера монтируемого оборудования. Расчеты, приведенные для приведения экономичности применения средств малой механизации, подтвердили целесообразность их использования даже для небольших объемов работ, так как они увеличивают производительность труда в 5-10 раз, а пользование механизированным инструментом – в 4-5 раз, а в отдельных случаях и в 10 раз выше, чем при пользовании обычным инструментом.
6.2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ДЛЯ ВЫБОРА МОНТАЖНЫХ
МЕХАНИЗМОВ
При выборе грузоподъемного механизма для монтажа технологического оборудования следует учитывать особенности компоновки объектов тепловой электростанции, в частности, цехов главного корпуса; количество и мощность устанавливаемых агрегатов, взаимное расположение оборудования, общий объем монтажных работ, методы монтажа, степень укрупнения оборудования, среднюю и максимальную массу блоков, необходимую высоту для подъема блоков. Влияние на выбор типа механизма оказывает характер принятых строительных конструкций зданий (закрытое, полуоткрытое или открытое), готовность строительных сооружений к началу монтажа, возможность использования строительных конструкций в качестве опорных элементов для установки или крепления монтажного механизма, а также степень совмещения строительных и монтажных работ на данном объекте.
Для крупных электростанций на стадии разработки технического проекта и ПОС в каждом конкретном случае выбираются основные монтажные механизмы для машинного зала, котельной, химводоочистки, насосной станции и др. В связи с этим имеется тесная увязка между компоновкой оборудования, конструкциями здания и монтажным механизмом.
Разнохарактерность монтажных работ на отдельных объектах электростанций и значительное отличие объемов монтажных работ для электростанций разной мощности не позволяют для всех случаев принимать одинаковые решения при выборе типов основных монтажных механизмов.
В общем объеме работ по монтаже технологического оборудования на тепловых электростанциях более 40% занимают такелажные работ, которые выполняются при помощи грузоподъемных механизмов.
Грузоподъемными механизмами в процессе монтажа производится не только подъем и перемещение блоков и деталей оборудования, но и их установка на проектное место, пригонка, выверка и присоединение к другим элементам оборудования. на выполнение указанных операций требуется гораздо больше времени, чем на подъем, перемещение и просто укладку или установку груза на место. Этим и объясняется низкая производительность грузоподъемных механизмов на монтаже.
Например, при установке блока котельного агрегата на строповку, подъем и перемещение блока затрачивается только 35% кранового времени, а около 65% расходуется на установку блока в проектное положение с пригонкой и выверкой его на ожидание, пока блок будет надежно прикреплен к ранее установленным конструкциям.
Кроме того, следует учесть, что многие детали оборудования, а также собранные монтажные блоки не имеют специальных рымов и мест для строповки и подготовки их к подъему.
Грузоподъемные механизмы для монтажа оборудования должны отвечать следующим условиям:
тип грузоподъемного механизма выбирается исходя из особенности компоновки электростанции и принятых схем и методов производства работ;
грузоподъемность механизма обеспечивает установку в проектное положение большинства монтируемых блоков;
производительность механизма обеспечивает принятый в графике темп монтажных работ.
Стоимость эксплуатации крана и механизации на 1 т смонтированного оборудования должна быть наименьшей.
При выборе механизмов для монтажа оборудования на электростанциях необходимо в первую очередь использовать все постоянные механизмы, предназначенные для выполнения ремонтных работ в процессе эксплуатации (краны котельного и машинного зала).
Общая грузоподъемность механизмов, устанавливаемых для обслуживания данной зоны монтажа и могущих одновременно и совместно поднять один груз (блок), должна быть выбрана из расчета подъема блока максимальной массы.
Масса блоков котельного и турбинного оборудования, собираемых на сборочных площадках строительства, выбирается применительно к принятой грузоподъемности монтажных механизмов.
Выбор грузоподъемности механизмов для подъема и установки на место наиболее крупных блоков оборудования (статора турбогенератора, барабанов котельных агрегатов, барабанов шаровых мельниц) возможен лишь в том случае, когда для этого требуется незначительно увеличить грузоподъемность крана (не более чем в 1,5 раза) или когда кран используется для монтажа большого количества агрегатов.
Тогда представляется возможным также укрупнить монтажные блоки и приблизить их массу к грузоподъемности монтажных механизмов.
Применение мощных механизмов приводит к увеличению стоимости их и к удорожанию строительных конструкций, связанных с установкой этих механизмов (подкрановые пути, подкрановые балки и др.).
Применение механизмов для подъема и установки большинства блоков (без блока максимальной массы) потребует создания специальных устройств и приспособлений для подъема блока максимальной массы монтажа и последующей разборки их, на что потребуется дополнительные затраты труда и средств.
Для правильного выбора мощности грузоподъемных механизмов необходимо в каждом конкретном случае проводить технико-экономические сравнения.
6.3. СПЕЦИАЛЬНЫЕ МЕХАНИЗМЫ ДЛЯ МОНТАЖА
КОТЕЛЬНОГО ОБОРУДОВАНИЯ
При переходе на крупноблочную сборку узлов оборудования и их монтаж потребовалось применение соответствующих грузоподъемных механизмов, как на сборочной площадке, так и на месте установки.
В котельной для подъема блоков в первые годы применения блочного монтажа в качестве таких средств использовались монтажные стрелы и вантовые Г-образные краны, мостовые, козловые, а также башенные краны.
Козловые краны. Последующее развитие блочного монтажа котельного оборудования, применение блоков доведением их массы до 50-70 т, а также необходимость осуществления одновременного поточного монтажа нескольких котлов привели к разработке новой конструкции грузоподъемного механизма – козлового крана.
Впервые в практике монтажа котельных агрегатов козловой кран был применен в 1943 г. на строительстве Челябинской ТЭЦ. Козловой кран был выполнен клепанной конструкции и имел горизонтальный мост, по нижнему поясу которого передвигались грузовые тележки. Мост опирался на две решетчатые ноги, а последние через соответствующие опорные балки – на восемь ходовых тележек железнодорожного типа. Грузоподъемность крана составляла 70 т, пролет 22,6 м и высота подъема крюка 34,5 м.
Козловой кран для монтажа газомазутных барабанных котельных агрегатов производительностью 500 т/ч на первой открытой Али-Байрамлинской ГРЭС имел грузоподъемность 100 т, пролет 31, высоту 44 и максимальную высоту подъема основного крюка 37,5 м. При помощи таких козловых кранов монтировались агрегаты также на Тбилисской, Ташкентской ГРЭС и др.
Преимуществом козлового крана является возможность его работы при наличии только фундаментов котельных агрегатов и одновременного и совмещенного производства монтажных работ по котельному агрегату и строительных работ по сооружению здания.
К недостаткам козлового крана следует отнести необходимость устройства специальных подкрановых путей, высокую стоимость крана, а также необходимость применения дополнительных грузоподъемных устройств для монтажа оборудования и конструкций в зоне прохождения ног крана.
Высокая производительность позволяет применять козловой кран грузоподъемностью 100 т в качестве основного монтажного механизма на объектах при совмещенном строительстве и монтаже на крупных электростанциях, где требуется монтаж не менее трех котельных агрегатов производительностью 420, 500 и 640 т/ч, а также для монтажа крупных котельных агрегатов на открытых электростанциях (табл. 6.1, рис. 6.2).
Рис.6.2. Козловой кран 100 т для монтажа котельных агрегатов
открытой установки.
Таблица 6.1