
- •Глава 1 Введение в экспертные системы 7
- •Глава 2. Состояние работ в области искусственного интеллекта. Роль экспертных систем в исследованиях по искусственному интеллекту 19
- •Глава 3. Классификация экспертных систем и инструментальных средств 27
- •Глава 4. Анализ состояния экспертных систем и инструментальных средств 39
- •Глава 5. Представление знаний в системах, основанных на знаниях 53
- •Глава 6. Методы и стратегии поиска решений в системах, основанных на знаниях 71
- •Глава 7. Основы методологии разработки экспертных систем 94
- •Глава 8. Инструментальный комплекс для создания статических экспертных систем (на примере интегрированного комплекса эко) 110
- •Глава 9. Инструментальный комплекс для создания экспертных систем реального времени (на примере интегрированной среды g2-gensym corp., сша) 119
- •Предисловие
- •Глава 1 Введение в экспертные системы
- •1.1. Назначение экспертных систем
- •1.2. Формальные основы экспертных систем
- •1.3 Архитектура статических и динамических экспертных систем
- •1.4 Этапы разработки экспертных систем
- •Литература
- •Вопросы для самопроверки
- •Глава 2. Состояние работ в области искусственного интеллекта. Роль экспертных систем в исследованиях по искусственному интеллекту
- •2.1 Основные направления искусственного интеллекта
- •2.2 Состояние работ в области экспертных систем
- •2.3 Состояние работ в области естественно - языковых систем
- •2.4 Состояние работ в области нейронных сетей
- •2.5 Состояние работ по новым направлениям искусственного интеллекта
- •Литература
- •Вопросы для самопроверки
- •Глава 3. Классификация экспертных систем и инструментальных средств
- •3.1 Классификация экспертных систем
- •3.1.1 Тип приложения
- •3.1.2 Стадия существования
- •3.1.3 Масштаб эс (тип эвм )
- •3.1.4 Тип проблемной среды
- •3.2 Классификация инструментальных средств
- •3.2.1 Уровень используемого языка
- •3.2.2 Парадигмы программирования (механизмы реализации исполняемых утверждений)
- •3.2.3 Способ представления знаний
- •3.2.4 Механизмы вывода и моделирования
- •3.2.5 Средства приобретения знаний
- •3.2.6 Технология разработки эс
- •3.3 Сопоставление инструментальных средств с типами проблемных сред
- •Литература
- •Вопросы для самопроверки
- •Глава 4. Анализ состояния экспертных систем и инструментальных средств
- •4.1 Анализ состояния статических экспертных систем
- •4.2 Анализ состояния динамических экспертных систем
- •4.2.1 Основные производители ис для эс рв
- •4.2.2 Сравнение ис для создания эс рв
- •Литература
- •Вопросы для самопроверки
- •Глава 5. Представление знаний в системах, основанных на знаниях
- •5.1 Состав и организация знаний в экспертных системах
- •5.1.1 Уровни представления и уровни детальности
- •5.1.2 Организация знаний в рабочей памяти
- •5.1.3 Организация знаний в базе знаний
- •5.2 Модели представления знаний
- •5.2.1 Логические модели представления знаний
- •5.2.2 Семантические модели
- •5.2.3 Фреймы
- •5.2.4 Объектно-ориентированный подход
- •5.2.5 Продукционные модели и модули, управляемые образцами
- •5.3 Практика использования моделей представления знаний в экспертных системах
- •5.3.1. Применение продукционных правил
- •5.3.2 Использование семантических сетей
- •5.3.3 Использование фреймов
- •5.3.4 Использование управляемых образцами модулей
- •5.3.5 Смешанные представления (объекты и правила)
- •Литература
- •Вопросы для самопроверки
- •Глава 6. Методы и стратегии поиска решений в системах, основанных на знаниях
- •6.1 Механизмы вывода экспертных систем
- •6.2 Стратегии как механизмы управления
- •6.3 Методы поиска решений в экспертных системах
- •6.3.1 Поиск решений в одном пространстве
- •6.3.2 Поиск в иерархии пространств
- •6.3.3. Поиск в альтернативных пространствах
- •6.3.4 Поиск с использованием нескольких моделей
- •6.3.5 Выбор метода решения задач
- •Литература
- •Вопросы для самопроверки
- •Глава 7. Основы методологии разработки экспертных систем
- •7.1 Идентификация
- •7.2 Концептуализация
- •7.3 Формализация
- •7.3.1 Структуризация исходной задачи
- •7.3.2 Структуризация предметной области на основе иерархии классов
- •7.3.3 Структуризация выполняемых утверждений базы знаний приложений
- •7.3.4 Структуризация приложения на основе иерархии "часть/целое"
- •7.4 Выполнение
- •7.5 Отладка и тестирование
- •7.5.1 Методы тестирования экспертных систем
- •7.5.2 Механизм инспекции экспертной системы
- •7.5.3 Применение архивных данных для формирования сценариев отладки и тестирования динамических экспертных систем (дэс)
- •7.6 Опытная эксплуатация и внедрение
- •Литература
- •Вопросы для самопроверки
- •Глава 8. Инструментальный комплекс для создания статических экспертных систем (на примере интегрированного комплекса эко)
- •8.1 Средства представления знаний и стратегии управления
- •8.1.1 Структура комплекса эко
- •8.1.2 Средства представления знаний в оболочке эко
- •8.1.3 Стратегии управления в оболочке эко
- •8.2 Приобретение знаний и решение задач средствами оболочки эко
- •8.3 Ввод общих знаний средствами системы к-эко
- •8.4 Формирование баз знаний на основе обучающей выборки средствами системы илис
- •Литература
- •Вопросы для самопроверки
- •Глава 9. Инструментальный комплекс для создания экспертных систем реального времени (на примере интегрированной среды g2-gensym corp., сша)
- •9.1 База знаний
- •9.1.1 Сущности и иерархия классов
- •9.1.2 Иерархия модулей и рабочих пространств
- •9.1.3 Структуры данных бз
- •9.2 Машина вывода, планировщик и подсистема моделирования
- •9.2.1 Машина вывода
- •9.2.2 Планировщик
- •9.2.3 Подсистема моделирования
- •9.3 Среда разработчика в системе g2
- •9.3.1 Естественно-языковый текстовый редактор
- •9.3.2 Интерфейс с пользователем
- •9.3.3 Средства инспекции и отладки
- •9.4 Интерфейс с внешним окружением
- •9.5 Проблемно/предметно-ориентированные среды и графические языки на базе g2
- •9.5.2 ReThink (подумай еще)
- •9.5.5 BatchDesign_Kit – интеллектуальное проектирование серийного производства в фармакологии
- •Литература
- •Вопросы для самопроверки
- •Литература
- •Приложение 2 Бизнес-Процесс "реинжиниринг" и интеллектуальное моделирование компаний
- •Литература
- •Приложение 3 Нейросетевая технология
- •Литература
- •Приложение 4 Системы поддержки принятия решений, хранилища данных и извлечение знаний
- •Литература
- •Приложение 5 Опыт применения динамических оболочек экспертных систем
7.2 Концептуализация
На этапе концептуализации эксперт и инженер по знаниям выделяют ключевые понятия, отношения и характеристики, необходимые для описания процесса решения задачи. На этом этапе определяются следующие особенности задачи: типы доступных данных; исходные и выводимые данные; подзадачи общей задачи; используемые стратегии и гипотезы; виды взаимосвязей между объектами проблемной области; типы используемых отношений (иерархия, причина/следствие, часть/целое и т.п.); процессы, используемые в ходе решения задачи; типы ограничений, накладываемых на процессы, используемые в ходе решения; состав знаний, используемых для решения задачи и для объяснения решения.
Для определения перечисленных характеристик задачи целесообразно составить детальный протокол действий и рассуждений эксперта в процессе решения хотя бы одной конкретной задачи. Такой протокол обеспечивает инженера по знаниям словарем терминов (объектов) и некоторым приблизительным представлением о тех стратегиях, которые использует эксперт. Кроме того, протокол помогает ответить на многие другие вопросы, возникающие в ходе разработки. На этом этапе инженер по знаниям рассматривает вопросы, относящиеся к представлению знаний и методам решения, но говорить о выборе конкретных способов и методов здесь еще рано.
Адекватным средством для выделения ключевых понятий, отношений и характеристик являются диаграммы, которые используют практически все современные ИС.
Диаграммы используются как средства проектирования, сопровождения и документирования, а также для организации взаимодействия между различными участниками процесса создания системы.
Являясь языком для описания требований и проектирования системы, диаграммы должны быть небольшими по размеру, простыми, понятными и полными. Для этого они должны опираться на формальные правила и использовать небольшое количество абстрактных символов.
К числу базовых типов диаграмм относятся [2,3]:
• контекстные диаграммы (структурно-функциональные схемы);
• диаграммы "сущность-связь";
• диаграммы потоков данных;
• диаграммы "состояния-переходы".
Для того чтобы показать, ЧТО система должна делать, надо показать всю систему, ее части и их взаимодействие. Это делается с помощью контекстных диаграмм (часто называемых структурно-функциональными схемами). Эти диаграммы, на которых представлены сама система (в виде системного процесса), ее основные части (подсистемы), включая операторы и основные блоки оборудования (измерения и управления), объекты внешнего окружения и основные потоки между ними, описывают разрабатываемую систему на высоком уровне. Основная функция системы (системный процесс) представляется кругом, а системные и внешние объекты - прямоугольниками. Стрелки показывают потоки данных. Все элементы схемы имеют идентификатор и снабжены комментариями.
Контекстная диаграмма в сочетании с перечнем системных требований стремится ответить на вопрос "Что делает система?", причем дает только частичный ответ. Для систем со сложными связями между объектами важно более детально представлять взаимоотношения между объектами. Это делается с помощью диаграмм "сущность -связь". В этих диаграммах объекты представляются прямоугольниками, а связи между ними - стрелками, на которых расположены ромбы. В прямоугольниках и ромбах записаны имена объектов и связей. Тип связи и ее направление определяются с помощью стрелок в начале и в конце линии связи. Тип связи задает отношение множественности между объектами, т.е. определяет, скольким экземплярам второго объекта соответствует один экземпляр первого объекта. Диаграммы "сущность - связь" также отвечают на вопрос "Что?"
После того как определено, что должна делать система, необходимо ответить на вопрос "Как?" Первый вопрос заключается в том, как система взаимодействует с внешним окружением. Ответ на этот вопрос дает диаграмма потоков данных (ДПД). На ней представлены внешние объекты, хранилища данных в системе, потоки данных, входящие, выходящие и проходящие внутри системы, и системные процессы, обрабатывающие эти потоки. Объекты принято обозначать квадратами, хранилища данных - узкими прямоугольниками без правой стороны, процессы - прямоугольниками с закругленными углами, а потоки данных - линиями со стрелками. ДПД позволяют проводить декомпозицию по уровням раскрытия системных процессов и потоков. В совокупности они показывают, как система отвечает требованиям и как реализуется проект.
Типы диаграмм, упомянутые выше, отражали статическое поведение системы. Для того чтобы показать динамическое поведение системы, какие события происходят в системе, как система на них реагирует и в какие состояния она попадает, используются диаграммы "состояний-переходов" (ДСП), которые моделируют поведение машины с конечным числом состояний [3]. Поведение системы представляется в виде множества дискретных, исключительных и конечных состояний Происходящие события приводят к изменению состояния системы; считается, что изменения происходят мгновенно. События могут происходить синхронно и асинхронно.