Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВЫЧ_ПРАКТ_1, 2.doc
Скачиваний:
5
Добавлен:
01.05.2025
Размер:
341.5 Кб
Скачать

Контрольные вопросы и задания

1. Приведите примеры прямых методов, известных Вам, например, из курса школьной или высшей математики.

2. Составьте два варианта программы алгоритма Герона с разными критериями достижения заданной точности 10–6 – по функции и аргументу. Вычислите с помощью этих программ значение .

Тема 2. Прямые методы линейной алгебры

2.1. Модификации метода Гаусса

При решении системы уравнений

простейшим вариантом метода Гаусса имеют место большие погрешности. Причина заключается в появлении больших коэффициентов, при округлении которых получается большая абсолютная погрешность   0.5. В свою очередь, большие коэффициенты получаются после деления на маленький ведущий коэффициент .

Вывод: для уменьшения влияния ошибок округления надо выбирать ведущий элемент не просто отличный от 0, но и достаточно большой.

Первая модификация метода Гаусса – поиск по строкам. В алгоритме ведущий элемент надо выбирать из условия .

Недостаток модификации. Предположим хi найден с погрешностью . Тогда при поиске какого-либо хs надо, согласно формуле обратного хода, умножать . При этом погрешность  также умножится на . Если значение велико, то погрешность возрастет.

Вывод: надо обеспечить, чтобы ведущий элемент был не просто большим, а самым большим по модулю в своей строке. Тогда при нормировке ведущей строки все прочие коэффициенты, согласно формуле (5), будут по модулю меньше 1, и ошибки будут уменьшаться.

Вторая модификация метода Гаусса – поиск по столбцам. Указанное требование можно обеспечить, если неизвестные хi исключаются в произвольном порядке, а в ведущей строке ищется , доставляющий . Это и будет очередной ведущий элемент. После определения ведущего элемента меняем местами k-й и r-й столбцы.

Внимание. При такой замене меняется нумерация неизвестных xi. Чтобы обеспечить такую замену, надо при программировании ввести массив p1,…pn с настоящими номерами неизвестных. В начале прямого хода все pi = i – обычная нумерация. После нахождения ведущего элемента меняем местами pk и pr. При обратном ходе по формуле (7) вычисляются перенумерованные xi. После вычисления всех неизвестных надо положить y[p[i]]:=x[i], и массив y[i] будет окончательным решением задачи.

Третья модификация метода Гаусса – полный поиск. В качестве ведущего выбирается элемент , доставляющий . При этом меняются местами k-й и r-й столбцы, pk и pr, а также m-я и k-я строки. Эта модификация обеспечивает максимальную точность, но и наиболее сложна.

2.2. Применение метода Гаусса для решения различных задач линейной алгебры

1. Обращение матриц. Пусть необходимо вычислить обратную матрицу к квадратной матрице А. Обозначим Х = А–1. Как известно АХ = I, где I – единичная матрица, в которой по диагонали расположены 1, а остальные элементы – 0. Иными словами, i-й столбец матрицы I равен

(1 стоит на i-м месте). Пусть х(i) – i-й столбец матрицы Х. Тогда, в силу правила умножения матриц (строка умножается на столбец) имеем А х(i) = e(i). Значит, для обращения матрицы надо решить n систем линейных уравнений с одинаковыми матрицами и разными правыми частями:

Ах = е(1); Ах = е(2); …; Ах = е(n). (2.1)

Решив эти системы, получим, что найденные решения х(1), х(2), …, х(n) являются столбцами матрицы А–1.

2. Вычисление определителей. В процессе преобразования матрицы А к треугольному виду методом Гаусса мы выполняли с ней следующие действия:

1) переставляли строки или столбцы в зависимости от модификации метода;

2) делили ведущую строку на ненулевой ведущий элемент;

3) к строкам матрицы прибавляли ведущую строку, умноженную на некоторое число.

Как известно, при таких преобразованиях определитель матрицы претерпевает соответствующие изменения:

1) изменяет знак;

2) делится на тот же элемент;

3) не меняется.

После прямого хода матрица А будет приведена к верхнему треугольному виду с единицами на главной диагонали. Определитель такой матрицы равен, очевидно, 1. С учетом тех изменений, которые претерпевал определитель матрицы А в процессе преобразований, имеем следующую формулу:

det A = (–1)s  a11  a22 … an n,

где aj j – ведущие элементы, s – число перестановок строк и/или столбцов при поиске ведущих элементов.