Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теплотехника (ответы).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
624.5 Кб
Скачать

18. Политропный процесс. Частные случаи политропного процесса.

До сих пор рассматривались процессы, у которых имелись вполне определенные признаки: изохорный процесс осуществлялся при постоянном объеме; изобарный — при постоянном давлении; изотермический — при постоянной температуре; адиабатный— при отсутствии теплообмена между рабочим телом и внешней средой. Наряду с этими процессами можно представить еще бесконечное множество процессов, у которых имеются другие постоянные признаки.

Условились всякий процесс идеального газа, в котором удельная теплоемкость является постоянной величиной, называть политропным процессом, а линию процесса — политропой.

Из определения политропного процесса следует, что основные термодинамические процессы — изохорный, изобарный, изотермический и адиабатный,— если они протекают при постоянной удельной теплоемкости, являются частными случаями политропного процесса. Итак, политропный процесс проходит при постоянной теплоемкости.

Cp=const

19. Нагрев и охлаждение твердых тел.

Когда твердое тело нагревается, его температура повышается, а энергия частиц растет. Наконец наступаем точка плавления. В этот момент частицы обретают достаточно энергии, чтобы разорвать силы притяжения, и твердое тело плавится. Дальнейшее нагревание приводит к тому, что жидкость достигает точки кипения, частицы ее окончательно освобождаются друг от друга, и жидкость превращается в газ. Пламя свечи нагревает воск, и он тает, но застывает вновь, стекая от пламени. Гейзеры выбрасывают на поверхность кипящую воду и пар, разогретые вулканическими процессами в земной коре. Когда вещество остывает, происходит обратный процесс. Когда температура газа падает до точки кипения, газ конденсируется и становится жидкостью. Охладившись до точки плавления, жидкость твердеет (замерзает) и превращается в твердое тело. Есть вещества, например углекислый газ, переходящие из твёрдого состояния в газообразное, минуя жидкое. Такое явление называется возгонкой. Когда вулканические процессы разогревают подземную воду до кипения, появляются гейзеры. Вода превращается в пар, давление возрастает, и кипящая вода и пар устремляются по трещинам вверх и вырываются на поверхность.

20. Уравнение состояния реальных газов.

Наиболее простым и качественно верно отображающим поведение реального газа, является уравнение Ван-дер-Ваальса:

(P + a/2)·( – b) = R·T . (6.3)

а , b – постоянные величины, первая учитывает силы взаимодействия, вторая учитывает размер молекул. a/2 – характеризует добавочное давление, под которым находится реальный газ вследствие сил сцепления между молекулами и называется внутренним давлением. Для жидких тел это давление имеет большие значения (например, для воды при 200С составляет 1050 Мпа), а для газов из-за малых сил сцепления молекул оно очень мало. Поэтому внешнее давление, под которым находится жидкость, оказывает ничтожное влияние на её объем, и жидкость считают несжимаемой. В газах в виду малости значения a/2 внешнее давление легко изменяет их объем. Уравнение Ван-дер-Ваальса качественно верно отображает поведение жидких и газообразных веществ, для двухфазных состояний оно неприменимо. На PV – диаграмме (рис.6.1) показаны изотермы построенные по уравнению Ван-дер-Ваальса. Из кривых видно, что при сравнительно низких температурах имеются волнообразные участки. Чем выше температура, тем короче эти части кривых. Эти волнообразные кривые указывают на непрерывный переход от жидкого состояния в парообразное при данной температуре. Точка А соответствует состоянии жидкости, точка В относится парообразному состоянии вещества.В действительности переход из жидкого состояния в парообразное всегда происходит через двухфазное состояние вещества. При этом при данной температуре процесс перехода происходит также и при постоянном давлении. Этот действительный переход из жидкого состояния в парообразное изображается прямой линией АВ. Практически для особо чистых веществ возможно осуществление участков волнообразной кривой AQ и DB. В первом случае имеют место неустойчивые состояния перегретой жидкости, а во втором – переохлажденного пара.

Реальные газы отличаются от идеальных газов тем, что молекулы этих газов имеют объемы и связаны между собой силами взаимодействия, которые уменьшаются с увеличением расстояния между молекулами.