
- •Техническая термодинамика. Определение. Общие сведения.
- •4. Диаграммы термодинамических процессов в pv, ts и hS координатах.
- •5. Уравнение состояния идеального газа.
- •6. Термодинамические процессы изменения состояния идеального газа.
- •8. Теплоемкость газов.
- •9. Истечение газов.
- •10. Теплообмен. Виды теплообмена.
- •11. Теплопроводность газов.
- •12. Конвективный теплообмен. Основы теории подобия.
- •13.Лучистый теплообмен.
- •14.Факторы, влияющие на интенсивность теплообмена.
- •15.Круговой процесс. Цикл Карно.
- •16. Параметры состояния термодинамической системы (давление, температура, удельный объем).
- •17. Энтальпия, Энтропия. Определение, физический смысл, размерность.
- •18. Политропный процесс. Частные случаи политропного процесса.
- •19. Нагрев и охлаждение твердых тел.
- •20. Уравнение состояния реальных газов.
- •21. Параметры и функции состояния воды и водяного пара.
- •22. Процесс преобразования в pv диаграмме.
- •23. Законы термодинамики.
- •24. Принцип работы турбины.
- •25. Паротурбинные установки (пту). Циклы пту.
- •26. Газотурбинные установки ( гту). Циклы гту.
- •27.Методы повышения экономичности работы пту и гту установок.
- •28.Промышленные холодильные установки. Циклы холодильных установок.
- •29.Теплопередача. Общий вид уравнений.
- •30.Цикл Ренкина. Цикл компрессора.
- •31.Циклы двигателей внутреннего сгорания.
- •32.Паросиловые установки. Перегрев пара. Термический кпд. Удельный расход пара.
- •33.Котельные установки. Типы котлов и их конструктивные особенности.
- •34. Котельно-вспомогательное оборудование. Назначение и основные характерстики.
- •35. Тепловой баланс котлоагрегата.
- •36.Конструктивные особенности паровых и водогрейных котлов.
- •37.Водоподготовка и водный режим паровых и водогрейных котлов.
- •38.Топливо. Виды топлива. Условное топливо.
- •39.Процессы горения. Расчет процессов горения.
- •40.Топки котлов и печей. Классификация и характеристика топочных устройств.
- •41. Особенности сжигания твердых и газообразных топлив
- •42.Тепловые электрические станции. Общие сведения.
- •43.Тепловые сети.
- •44.Основные элементы тепловых сетей.
- •45. Расчет тепловых сетей.
- •46.Системы теплоснабжения (водяные сети).
- •47.Системы пароснабжения. Сбор и возврат конденсата.
- •48.Режимы работы систем теплоснабжения.
- •49. Температурные графики систем отопления и горячего водоснабжения.
- •50.Наладка и регулирование систем теплоснабжения.
- •51.Теплообменные аппараты. Основные типы. Конструкция.
- •52.Расчет теплообменных аппаратов.
- •53.Сушильные установки, h-d диаграмма
- •54.Промышленные печи.
28.Промышленные холодильные установки. Циклы холодильных установок.
Назначение холодильных машин – отбирать тепло от охлаждаемого объекта и возвращать его более теплой окружающей среде.
Холодильная машина представляет собой замкнутую систему, внутри которой циркулируется рабочее тело, называемое холодильным агентом или хладагентом.
Чтобы перенести тепло, необходимо затратить внешнюю энергию на сжатие хладагента. Работа сжатия в холодильных машинах всегда больше работы расширения. Линия сжатия на графиках холодильных циклов располагается выше линии расширения, а сам цикл совершается против часовой стрелки. Поэтому такие циклы называют обратными или холодильными циклами.
Для эффективной работы холодильной машины не безразлично, из каких процессов состоит совершающийся в ней обратный цикл. Стремятся создать такие циклы, в которых получение холода происходит с минимальной затратой внешней энергии.
Наиболее совершенным холодильным циклом является обратный цикл Карло, получивший свое название по имени французского инженера, который предложил и исследовал его в середине 19 века. Этот цикл состоит из двух изотермических (4-1 и 2-3) и двух адиабатных (1-2 и 3-4) процессов.
В изотермическом процессе (4-1) к холодильному агенту подводится тепло от охлаждаемой среды, при этом температура остается постоянной. Точка 1 характеризует состояние паров хладагента, температура которых соответствует температуре охлаждаемой среды. В процессе адиабатного сжатия (1-2), протекающего без теплообмена с окружающей средой, температура и давление паров хладагента возрастают до значений, при которых начинается конденсация их в жидкость. Это состояние характеризуется на графике точкой 2. На этот процесс затрачивается работа. Процесс конденсации протекает при постоянной температуре Тк и сопровождается выделением скрытой теплоты парообразования, которая отводится в окружающую среду. Точка 3 на графике характеризует состояние, при котором процесс конденсации заканчивается и пары холодильного агента полностью переходят в жидкое состояние.
В адиабатном процессе расширения (3-4) холодильный агент понижает свою температуру от температуры Тк до температуры охлаждаемого объекта То. При этой температуре начинается процесс испарения жидкого хладагента, который протекает при постоянной температуре То и сопровождается поглощением скрытой теплоты парообразования (4-1).
29.Теплопередача. Общий вид уравнений.
Теплопередачей называется передача теплоты от горячего теплоносителя к холодному теплоносителю через стенку, разделяющую эти теплоносители.
Примерами теплопередачи являются: передача теплоты от греющей воды нагревательных элементов (отопительных систем) к воздуху помещения; передача теплоты от дымовых газов к воде через стенки кипятильных труб в паровых котлах; передача теплоты от раскаленных газов к охлаждающей воде (жидкости) через стенку цилиндра двигателя внутреннего сгорания; передача теплоты от внутреннего воздуха помещения к наружному воздуху и т. д. При этом ограждающая стенка является проводником теплоты, через которую теплота передается теплопроводностью, а от стенки к окружающей среде конвекцией и излучением. Поэтому процесс теплопередачи является сложным процессом теплообмена.
При передаче теплоты от стенки к окружающей среде в основном преобладает конвективный теплообмен, поэтому будут рассматриваться такие задачи.
1). Теплопередача через плоскую стенку.
Рассмотрим однослойную плоскую стенку толщиной и теплопроводностью (рис12.1).
Температура горячей жидкости (среды) t'ж, холодной жидкости (среды) t''ж.
Количество теплоты, переданной от горячей жидкости (среды) к стенке по закону Ньютона-Рихмана имеет вид: