
- •Техническая термодинамика. Определение. Общие сведения.
- •4. Диаграммы термодинамических процессов в pv, ts и hS координатах.
- •5. Уравнение состояния идеального газа.
- •6. Термодинамические процессы изменения состояния идеального газа.
- •8. Теплоемкость газов.
- •9. Истечение газов.
- •10. Теплообмен. Виды теплообмена.
- •11. Теплопроводность газов.
- •12. Конвективный теплообмен. Основы теории подобия.
- •13.Лучистый теплообмен.
- •14.Факторы, влияющие на интенсивность теплообмена.
- •15.Круговой процесс. Цикл Карно.
- •16. Параметры состояния термодинамической системы (давление, температура, удельный объем).
- •17. Энтальпия, Энтропия. Определение, физический смысл, размерность.
- •18. Политропный процесс. Частные случаи политропного процесса.
- •19. Нагрев и охлаждение твердых тел.
- •20. Уравнение состояния реальных газов.
- •21. Параметры и функции состояния воды и водяного пара.
- •22. Процесс преобразования в pv диаграмме.
- •23. Законы термодинамики.
- •24. Принцип работы турбины.
- •25. Паротурбинные установки (пту). Циклы пту.
- •26. Газотурбинные установки ( гту). Циклы гту.
- •27.Методы повышения экономичности работы пту и гту установок.
- •28.Промышленные холодильные установки. Циклы холодильных установок.
- •29.Теплопередача. Общий вид уравнений.
- •30.Цикл Ренкина. Цикл компрессора.
- •31.Циклы двигателей внутреннего сгорания.
- •32.Паросиловые установки. Перегрев пара. Термический кпд. Удельный расход пара.
- •33.Котельные установки. Типы котлов и их конструктивные особенности.
- •34. Котельно-вспомогательное оборудование. Назначение и основные характерстики.
- •35. Тепловой баланс котлоагрегата.
- •36.Конструктивные особенности паровых и водогрейных котлов.
- •37.Водоподготовка и водный режим паровых и водогрейных котлов.
- •38.Топливо. Виды топлива. Условное топливо.
- •39.Процессы горения. Расчет процессов горения.
- •40.Топки котлов и печей. Классификация и характеристика топочных устройств.
- •41. Особенности сжигания твердых и газообразных топлив
- •42.Тепловые электрические станции. Общие сведения.
- •43.Тепловые сети.
- •44.Основные элементы тепловых сетей.
- •45. Расчет тепловых сетей.
- •46.Системы теплоснабжения (водяные сети).
- •47.Системы пароснабжения. Сбор и возврат конденсата.
- •48.Режимы работы систем теплоснабжения.
- •49. Температурные графики систем отопления и горячего водоснабжения.
- •50.Наладка и регулирование систем теплоснабжения.
- •51.Теплообменные аппараты. Основные типы. Конструкция.
- •52.Расчет теплообменных аппаратов.
- •53.Сушильные установки, h-d диаграмма
- •54.Промышленные печи.
Техническая термодинамика. Определение. Общие сведения.
Теплотехника – наука, которая изучает методы получения, преобразования, передачи и использования теплоты, а также принципы действия и конструктивные особенности тепловых машин, аппаратов и устройств. Теплота используется во всех областях деятельности человека. Для установления наиболее рациональных способов его использования, анализа экономичности рабочих процессов тепловых установок и создания новых, наиболее совершенных типов тепловых агрегатов необходима разработка теоретических основ теплотехники. Различают два принципиально различных направления использования теплоты – энергетическое и технологическое. При энергетическом использовании, теплота преобразуется в механическую работу, с помощью которой в генераторах создается электрическая энергия, удобная для передачи на расстояние. Теплоту при этом получают сжиганием топлива в котельных установках или непосредственно в двигателях внутреннего сгорания. При технологическом - теплота используется для направленного изменения свойств различных тел (расплавления, затвердевания, изменения структуры, механических, физических, химических свойств).
Термодинамика изучает законы превращения энергии в различных процессах, происходящих в макроскопических системах и сопровождающихся тепловыми эффектами.
Такими теоретическими разделами являются техническая термодинамика и основы теории теплообмена, в которых исследуются законы превращения и свойства тепловой энергии и процессы распространения теплоты.
Данный курс является общетехнической дисциплиной при подготовке специалистов технической специальности.
2. Термодинамическая система. Определение.
ТДС – представляет собой совокупность материальных тел находящихся в мех-ом и тепловом взаимодействии друг с другом и с внеш средой.
В самом общем случае ТДС может обмениваться со средой и веществом, такая ТДС назыв открытой.
ТДС которая не может обмениваться с окружающей средой, называют теплоизолированной или адиабатной.
ТДС не обменивающаяся с внеш средой ни теплом, ни вещ-ом, называется изолированной.
Простейшей ТДС явл рабочее тело, осуществляющее взаимное превращение теплоты и работы.
Параметры состояния
Св-ва каждои системы хар-ся рядом величин, которые называются параметрами состояния.
Давление обусловлено вз-ем молекул раб тела с поверх и численно равно силе, дей-ей на ед площади поверхности тела по нормали к последней.
,
где n – число молекул в
ед объёма, m – масса
молекулы,
-
средняя квадратичная скорость поступ
движ.
Температура физическая велич хар-ая степегь нагретости тела. Сточки зрения МКТ температура есть мера интенсивности теплового движения молекул.
,
k – постоянная Больцмана = 1,380662*10-2 Дж/К
T = t + 273,15
Удельный объём υ - объём ед массы вещ-ва
Если тело массой М занимает объём V, то по определению υ = V/M.
Между удельным объёмом вещ-ва и плотностью сущ соот υ = 1/ρ
Если все термодинамические параметры постоянны во времени и одинаковы во всех точках системы, то такое состояние называется равновесным. Если между различными точками в системе существуют разности температур, давлений и др параметров, то она явл неравновесной.
Изолированная система с течением времени всегда приходит в состояние равновесия и никогда самопроизвольно выйти из него не может.
3.Термодинамический процесс. Работа процесса.
В общем случае любой термодинамический процесс можно описать уравнением pυm = const
1. изохорный процесс υ = const (m = ∞)
2. изобарный процесс p = const (m = 0)
3. изотермический процесс T = const (m = 1)
4. адиабатный процесс S = const, Δq = 0 (m = k = cp/cυ)
5. политропный процесс pυn = const (m = n = (-∞;+∞))
Совокупность изменений состояния т/д системы при переходе из одного состояния в другое называется т/д процессом. Т/д процессы бывают равновесные и неравновесные. Если процес проходит через равновесные состояния, то он называется равновесным. В реальных случаях все процессы являются неравновесными.
Если при любом т/д процессе изменение параметра состояния не зависит от вида процесса, а определяется начальным и конечным состоянием, то параметры состояния называются функцией состояния. Такими параметрами являются внутренняя энергия, энтальпия, энтропия и т.д.
Интенсивные параметры – это параметры не зависящие от массы системы (давление, температура).
Аддитивные (экстенсивные) параметры – параметры, значения которых пропорциональны массе системы (Объем, энергия, энтропия и т.д.).
\