
- •Теория сварочных процессов
- •1. Физическая сущность процесса сварки. Три основные особенности сварочных процессов.
- •2.Классификация способов сварки по видам активации энергии и агрегатному состоянию вещества.
- •3. Основные технические задачи, решаемые с помощью сварки.
- •4. Источники тепла при сварке.
- •5. Методы расчета температур при сварке. Краевые и граничные условия.
- •6. Виды передачи тепла.
- •7. Три стадии распространения тепла при сварке. Их практическое значение.
- •8. Методы решения дифференциального уравнения теплопроводности.
- •9. Схематизация источников тепла и нагреваемых тел, применяемая для расчета температур при сварке.
- •10. Как зависит температурное поле от параметров режима сварки и теплофизических свойств свариваемого материала.
- •11. Сварочная ванна, факторы, определяющие размеры и форму сварочной ванны.
- •12. Этапы затвердевания сварочной ванны.
- •13. Образование первичных кристаллитов. Скорости затвердевания и кристаллизации.
- •14. Сварочная текстура и ее влияние на свойства сварных соединений.
- •15. Механизм образования горячих трещин при сварке.
- •16. Первичная и вторичная структуры сварных соединений.
- •17. Способы борьбы с горячими трещинами при сварке.
- •18. Холодные трещины при сварке.
- •19. Пути уменьшения склонности сварных соединений к образованию холодных трещин.
- •20. Замедленное разрушение, причины, пути уменьшения склонности сварных соединений к замедленному разрушению.
- •21. Свариваемость и методы ее оценки.
- •22. Проверка служебных характеристик сварных соединений.
- •23. Раскройте суть понятий: температурный интервал хрупкости, эффективный интервал кристаллизации, полигонизация.
- •24. Причины образования пористости при сварке. Механизм образования пор при сварке плавлением.
- •25. В чем состоят особенности протекания химических реакций при сварке?
- •26. Что представляют собой сварочные шлаки, их физико-химические характеристики и свойства?
- •27. Закон Нернста и его применение в сварочной практике.
- •28. Закон действующих масс и константа равновесия химических реакций.
- •Закон действующих масс
- •30. Легирование металла при сварке.
- •31. Рафинирование металла при сварке.
- •32. Модифицирование металла при сварке.
- •33. Виды химической неоднородности металла сварного соединения.
- •34. В чем разница между составом покрытий электродов и флюсов, а также шлаками, образующимися в ходе их расплавления при сварке.
- •35. Механизмы образования неоднородности металла шва
- •36. Объясните понятия «ликвация» и «сегрегация».
- •37. Назначение электродных покрытий, типы покрытий. Почему электроды с двухслойным покрытием можно считать перспективным видом электродов?
- •38. Факторы, определяющие характер переноса металла при дуговой сварке плавлением.
- •39. Вязкость жидкости и практическое значение её для сварочных процессов.
- •40. Окисление и диссоциация окислов при сварке.
- •41. Виды электрических дуг, применяемых в сварочных процессах.
- •42. Механизм возникновения остаточных сварочных напряжений и деформаций.
- •43. Методы борьбы со сварочными напряжениями и деформациями.
3. Основные технические задачи, решаемые с помощью сварки.
В решение задач научно- технического прогресса важное место принадлежит сварке. Сварка является технологическим процессом, широко применяемая практически во всех отраслях народного хозяйства. С применением сварки создаются серийные и уникальные машины. Сварка внесла коренные изменения в конструкцию и технологию производства многих изделий. При изготовлении металлоконструкций, прокладке трубопроводов, установке технологического оборудования, на сварку приходится четвертая часть всех строительно-монтажных работ. Основным видом сварки является дуговая сварка.
На современном этапе развития сварочного производства в связи с развитием научно-технической революции резко возрос диагноз свариваемых толщин, материалов, видов сварки. В настоящее время сваривают материалы толщиной от несколько микрон (в микроэлектронике) до нескольких метров (в тяжелом машиностроении).
К свойствам сварных соединений относят также пластичность, коррозионную стойкость, износостойкость и др. Эти свойства будут определять требования к сварным соединениям, которые обеспечиваются определенными конструктивными и технологическими характеристиками сварного соединения. К конструктивным характеристикам относят форму и геометрические размеры сварного шва и сварных точек.
К технологическим характеристикам относят уровень остаточных напряжений, величину деформаций, размеры и количество дефектов и т.д.
К показателям надёжности изделий и сварных соединений относятся: безотказность; долговечность; ремонтопригодность.
4. Источники тепла при сварке.
Сварка — это технологический процесс получения неразъёмного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), и/или пластическом деформировании. Источники тепла при сварке. В большинстве случаев тепло получают вблизи соединения или в самом соединении из других видов энергии. Классифицируем способы сварки по видам энергии и месту её преобразования в тепловую.
1 – газопламенная сварка; 2 – кузнечная сварка; 3 – термитная сварка; 4 – электродуговая сварка; 5 – пайка твёрдым нагретым телом; 6 – сварка трением; 7 – сварка световым лучом (лазером); 8 – сварка сфокусированным световым лучом (лампа солнце); 9 – электронно-лучевая сварка; 10 – электрошлаковая сварка; 11 – контактная сварка; 12 – высокочастотная сварка.
Химическая энергия как сварочный источник тепла.
Горение газов. Газопламенная сварка.
Горение – реакция окисления, как правило экзотермическая.
Ацетилен, пропан, бутан, природный газ, пары керосина. Эти вещества смешивают с кислородом и зажигают, идёт химическая реакция типа:
А + О2 С + D + Q
Q – тепло плавит свариваемые кромки и присадочный материал.
Горение Ме в кислороде.
Применяется для резки и сварки металлов и неметаллов.
Газопламенная
резка Ме.
Разрезаемый Ме нагревают газовым пламенем до температуры воспламенения, подают струю режущего кислорода, Ме сгорает, выделяя дополнительное тепло Q`.
Ме + О2 А + В + Q`
Резка кислородным копьём.
Тепло выделяется за счёт реакции горения железа в кислороде. Конец стальной трубы нагревают до воспламенения и подают кислород. По мере сгорания трубу подают в сторону разрезаемой заготовки.
Реакции между металлом и окислом другого металла.
На этой реакции основана термитная сварка. Подбирают смесь из порошков окисла Ме и другого чистого Ме (Fe3O4 + Al = термит). Второй металл более активен с О2. Смесь подогревают до температуры 750С (зажигают). Идёт реакция окисления более активного Ме, из окисла восстанавливается менее активный Ме. При этом выделяется тепло, которого достаточно для расплавления свариваемого материала.
3 Fe3O4 + 8 Al 9 Fe + 4 Al2O3 + Q2
Q – тепло плавит свариваемые кромки и присадочный материал.
Превращение механической энергии в тепловую.
Количество тепла, выделяемое при переходе механической энергии в тепловую зависит от силы, с которой прижимают детали, от скорости перемещения и от времени взаимодействия поверхностей.
Q = FVt
Энергия излучения как источник тепла при сварке.
При облучении поверхности тела светом энергия квантов передаётся при торможении частицам поверхности. Температура поверхности возрастает. Если световую энергию сконцентрировать на малом участке поверхности, то можно нагреть до температуры плавления.
Пример: Световая сварка сфокусированным лучом солнца (мощной лампы).
Электрическая энергия как сварочный источник тепла.
Электронный луч.
При облучении поверхности потоком электронов их кинетическая энергия переходит в тепло, на этом основан процесс электронно-лучевой сварки, 1950 г. (ФРГ).
1
– источник ускоряющего напряжения;
2 – источник питания катода;
3 – катод;
4 – анод;
5 – фокусирующие катушки;
6 – электронный луч;
7 – изделие;
8 – вакуумная камера;
9 – потенциометр фокусировки луча.
Катод, анод и фокусирующие катушки составляют электронную пушку.
Мощность луча определяется ускоряющим напряжением (Uуск = 105…106 В) и током луча (Iлуча = 50…500 мА). Количество электронов в луче 1017 – 1018 на см2, V 200000 км/с. Высокая плотность энергии ведёт к интенсивному испарению Ме, реактивные силы паров раздвигают жидкий Ме, луч проникает внутрь.
КПД = 75…90%
Энергия теряется на аноде, затрачивается на испарения, а также на вторичную и термоэлектронную эмиссию. При температуре больше 4000К сварка невозможна из-за испарения.
Достоинства: Можно варить несколько недоступных швов за один проход. Высокая концентрация энергии позволяет получать узкие швы с соотношением высота/ширина = 15 (для дуговой сварки 1).
Недостатки: Дороговизна оборудования. Необходимость вакуума. Необходимость высокой квалификации операторов.
При сварке используются различные источники энергии: электрическая дуга, электрический ток, газовое пламя, лазерное излучение, электронный луч, трение, ультразвук. Развитие технологий позволяет в настоящее время осуществлять сварку не только в условиях промышленных предприятиях, но в полевых и монтажных условиях (в степи, в поле, в открытом море и т. п.), под водой и даже в космосе. Процесс сварки сопряжен с опасностью возгораний; поражений электрическим током; отравлений вредными газами; поражением глаз и других частей тела тепловым, ультрафиолетовым, инфракрасным излучением и брызгами расплавленного металла.
Источники тепла при сварке
При сварке плавлением в качестве источников нагрева используется тепло электрической дуги или ацетилено-кислородного пламени.
Оба источника характеризуются высокой концентрацией выделяемой теплоты, что обусловливает местный крайне неравномерный нагрев свариваемых изделий.
Использование источников тепла, дающих местный неравномерный нагрев изделия, неизбежно вызывает ряд сопутствующих сварке специфических явлений, таких как, например, возникновение сварочных напряжений и деформаций или образование в основном металле вблизи шва зоны с измененной структурой.
Электрическая дуга как источник тепла обеспечивает превращение электрической энергии в тепловую с резкой концентрацией тепла в небольшом объеме столба дуги. Центральный столб дуги окружен факелом газов, нагретых до более низких температур.
В изделие тепло дуги вводится в пределах определенной ограниченной площади, называемой пятном нагрева. Наибольшая часть тепла вводится через еще меньшую площадь, через так называемые дуговые пятна, располагающиеся под центральным столбом дуги.
Газо-кислородное пламя имеет свои особенности: нагрев изделия осуществляется теплом омывающих газов, поэтому пятно нагрева значительно больше, чем при нагреве дугой (при одинаковой эффективной тепловой мощности).
Процесс теплообмена между пламенем и нагреваемой поверхностью тела стремится к предельному состоянию равновесия, при котором температура в любой точке тела постоянна.
Концентрированность нагрева изделия в пределах пятна нагрева при использовании электрической дуги и ацетилено-кислородного пламени совершенно различна.
По используемой энергии виды сварки можно разделить наследующие группы: механическая, химическая, электрическая, электромеханическая, химико-механическая. Примерами применения
механической энергии
для сварки являются холодная сварка, сварка взрывом сварка трением. Виды сварки, использующие
химическую энергию
, характеризуются нагревом металла посредством превращения химической энергии в тепловую. Примером такого использования химической энергии является газовая сварка плавлением.