
- •Теория сварочных процессов
- •1. Физическая сущность процесса сварки. Три основные особенности сварочных процессов.
- •2.Классификация способов сварки по видам активации энергии и агрегатному состоянию вещества.
- •3. Основные технические задачи, решаемые с помощью сварки.
- •4. Источники тепла при сварке.
- •5. Методы расчета температур при сварке. Краевые и граничные условия.
- •6. Виды передачи тепла.
- •7. Три стадии распространения тепла при сварке. Их практическое значение.
- •8. Методы решения дифференциального уравнения теплопроводности.
- •9. Схематизация источников тепла и нагреваемых тел, применяемая для расчета температур при сварке.
- •10. Как зависит температурное поле от параметров режима сварки и теплофизических свойств свариваемого материала.
- •11. Сварочная ванна, факторы, определяющие размеры и форму сварочной ванны.
- •12. Этапы затвердевания сварочной ванны.
- •13. Образование первичных кристаллитов. Скорости затвердевания и кристаллизации.
- •14. Сварочная текстура и ее влияние на свойства сварных соединений.
- •15. Механизм образования горячих трещин при сварке.
- •16. Первичная и вторичная структуры сварных соединений.
- •17. Способы борьбы с горячими трещинами при сварке.
- •18. Холодные трещины при сварке.
- •19. Пути уменьшения склонности сварных соединений к образованию холодных трещин.
- •20. Замедленное разрушение, причины, пути уменьшения склонности сварных соединений к замедленному разрушению.
- •21. Свариваемость и методы ее оценки.
- •22. Проверка служебных характеристик сварных соединений.
- •23. Раскройте суть понятий: температурный интервал хрупкости, эффективный интервал кристаллизации, полигонизация.
- •24. Причины образования пористости при сварке. Механизм образования пор при сварке плавлением.
- •25. В чем состоят особенности протекания химических реакций при сварке?
- •26. Что представляют собой сварочные шлаки, их физико-химические характеристики и свойства?
- •27. Закон Нернста и его применение в сварочной практике.
- •28. Закон действующих масс и константа равновесия химических реакций.
- •Закон действующих масс
- •30. Легирование металла при сварке.
- •31. Рафинирование металла при сварке.
- •32. Модифицирование металла при сварке.
- •33. Виды химической неоднородности металла сварного соединения.
- •34. В чем разница между составом покрытий электродов и флюсов, а также шлаками, образующимися в ходе их расплавления при сварке.
- •35. Механизмы образования неоднородности металла шва
- •36. Объясните понятия «ликвация» и «сегрегация».
- •37. Назначение электродных покрытий, типы покрытий. Почему электроды с двухслойным покрытием можно считать перспективным видом электродов?
- •38. Факторы, определяющие характер переноса металла при дуговой сварке плавлением.
- •39. Вязкость жидкости и практическое значение её для сварочных процессов.
- •40. Окисление и диссоциация окислов при сварке.
- •41. Виды электрических дуг, применяемых в сварочных процессах.
- •42. Механизм возникновения остаточных сварочных напряжений и деформаций.
- •43. Методы борьбы со сварочными напряжениями и деформациями.
27. Закон Нернста и его применение в сварочной практике.
Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.
Нернста закон распределения определяет относительное содержание в двух несмешивающихся или ограниченно смешивающихся жидкостях растворимого в них компонента; является одним из законов идеальных разбавленных растворов. Открыт в 1890 В. Нернстом. Согласно Н. з. р., при равновесии отношение концентраций третьего компонента в двух жидких фазах является постоянной величиной. Н. з. р. может быть записан в виде c1/c2 = k, где c1 и c2 — равновесные молярные концентрации третьего компонента в первой и второй фазах; постоянная k — коэффициент распределения, зависящий от температуры. Н. з. р. позволяет определить более выгодные условия экстрагирования веществ из растворо
28. Закон действующих масс и константа равновесия химических реакций.
Допустим, что в гомогенной системе реагируют два вещества А и В образовывая продукты реакции С и Д .Процесс стремиться к некоторому положению равновесия ,при котором имеются четыре вещества.
А+В=С+D+Q при T,P,V
Если при тех же условиях пройдет обратная реакция, то она также пройдет не до конца, достигнет положения равновесия и остановится.
С+D=А+В- Q
Поэтому реакции записываются, охватывая оба процесса. Причем уравнение обратной реакции принято писать так, чтобы в правую часть входил положительный тепловой эффект.
Порядок записи уравнения не указывает, какие вещества являются исходными, а какие продуктами реакции и в каком направлении идет данная реакция. Правильнее будет предположить, что реакция всегда идет одновременно как в том, так и в другом направлении. Однако скорости протекания этих реакций неодинаковы. Достижение равновесия характеризуется тем, что отношение количества веществ Аи В с одной стороны и Си Д стороны не меняются.
Положение химического равновесия зависит от величины скоростей противоположных реакций.
Основными факторами, обуславливающими скорость химических превращений, является:
Концентрация реагентов,
Внешние условия (температура и давление)
Наличие катализаторов. При постоянной температуре и давление наиболее сильное влияние на скорость реакции оказывает концентрация реагентов. Можно считать ,что скорость реакции увеличивается прямо пропорционально концентрации участвующих в реакции веществ,т.к. пропорционально концентрации возрастает число столкновений молекул ,обуславливающих саму реакцию. Это положение известно под названием закона действующих масс.
Общая формула
где
ai — активности веществ, выраженные через концентрации, парциальные давления либо мольные доли;
νi — стехиометрический коэффициент (для исходных веществ принимается отрицательным, для продуктов — положительным);
Kc — константа химического равновесия
На практике в расчётах, не требующих особой точности, значения активности обычно заменяются на соответствующие значения концентраций (для реакций в растворах) либо парциальных давлений (для реакций между газами).
Пример: для стандартной реакции
константа химического равновесия определяется по формуле
При постоянной температуре отношение равновесных концентраций (парциальных давлений) конечных продуктов к равновесным концентрациям (парциальным давлениям) исходных реагентов, возведенных соответственно в степени, равные их стехиометрическим коэффициентам, величина постоянная