
- •Теория сварочных процессов
- •1. Физическая сущность процесса сварки. Три основные особенности сварочных процессов.
- •2.Классификация способов сварки по видам активации энергии и агрегатному состоянию вещества.
- •3. Основные технические задачи, решаемые с помощью сварки.
- •4. Источники тепла при сварке.
- •5. Методы расчета температур при сварке. Краевые и граничные условия.
- •6. Виды передачи тепла.
- •7. Три стадии распространения тепла при сварке. Их практическое значение.
- •8. Методы решения дифференциального уравнения теплопроводности.
- •9. Схематизация источников тепла и нагреваемых тел, применяемая для расчета температур при сварке.
- •10. Как зависит температурное поле от параметров режима сварки и теплофизических свойств свариваемого материала.
- •11. Сварочная ванна, факторы, определяющие размеры и форму сварочной ванны.
- •12. Этапы затвердевания сварочной ванны.
- •13. Образование первичных кристаллитов. Скорости затвердевания и кристаллизации.
- •14. Сварочная текстура и ее влияние на свойства сварных соединений.
- •15. Механизм образования горячих трещин при сварке.
- •16. Первичная и вторичная структуры сварных соединений.
- •17. Способы борьбы с горячими трещинами при сварке.
- •18. Холодные трещины при сварке.
- •19. Пути уменьшения склонности сварных соединений к образованию холодных трещин.
- •20. Замедленное разрушение, причины, пути уменьшения склонности сварных соединений к замедленному разрушению.
- •21. Свариваемость и методы ее оценки.
- •22. Проверка служебных характеристик сварных соединений.
- •23. Раскройте суть понятий: температурный интервал хрупкости, эффективный интервал кристаллизации, полигонизация.
- •24. Причины образования пористости при сварке. Механизм образования пор при сварке плавлением.
- •25. В чем состоят особенности протекания химических реакций при сварке?
- •26. Что представляют собой сварочные шлаки, их физико-химические характеристики и свойства?
- •27. Закон Нернста и его применение в сварочной практике.
- •28. Закон действующих масс и константа равновесия химических реакций.
- •Закон действующих масс
- •30. Легирование металла при сварке.
- •31. Рафинирование металла при сварке.
- •32. Модифицирование металла при сварке.
- •33. Виды химической неоднородности металла сварного соединения.
- •34. В чем разница между составом покрытий электродов и флюсов, а также шлаками, образующимися в ходе их расплавления при сварке.
- •35. Механизмы образования неоднородности металла шва
- •36. Объясните понятия «ликвация» и «сегрегация».
- •37. Назначение электродных покрытий, типы покрытий. Почему электроды с двухслойным покрытием можно считать перспективным видом электродов?
- •38. Факторы, определяющие характер переноса металла при дуговой сварке плавлением.
- •39. Вязкость жидкости и практическое значение её для сварочных процессов.
- •40. Окисление и диссоциация окислов при сварке.
- •41. Виды электрических дуг, применяемых в сварочных процессах.
- •42. Механизм возникновения остаточных сварочных напряжений и деформаций.
- •43. Методы борьбы со сварочными напряжениями и деформациями.
Теория сварочных процессов
1. Физическая сущность процесса сварки. Три основные особенности сварочных процессов.
Сваркой называется технологический процесс получения неразъемных соединений посредством установления межатомных связей между свариваемыми частями при их местном или общем нагреве, или при пластическом деформировании, или совместным действием того и другого.
Сварное соединение металлов характеризуется непрерывностью их структур. Для получения сварного соединения нужно осуществить межмолекулярное сцепление между свариваемыми деталями, которое приводит к установлению атомарной связи в пограничном слое.
Принципиальная сущность процесса сварки очень проста. Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы. Процесс соединения после соприкосновения протекает самопроизвольно (спонтанно), без затрат энергии и весьма быстро, практически мгновенно.
Физическая сущность процесса сварки очень проста. Поверхностные атомы куска металла имеют свободные, ненасыщенные связи, которые захватывают всякий атом или молекулу, приблизившуюся на расстояние действия межатомных сил. Сблизив с помощью сварочного оборудования поверхности двух кусков металла на расстояние действия межатомных сил или, говоря проще, до соприкосновения поверхностных атомов, получим по поверхности соприкосновения сращивание обоих кусков в одно монолитное целое с прочностью соединения цельного металла, поскольку внутри металла и по поверхности соединения действуют те же межатомные силы. Процесс соединения после соприкосновения протекает самопроизвольно (спонтанно), без затрат энергии и весьма быстро, практически мгновенно.
Сварка представляет собой технологический процесс получения плотного неразъемного соединения деталей с использованием сил молекулярного сцепления при этом материал соединения (сварной шов) имеет те же физические и механические характеристики, что и соединяемые детали (сварочные аппараты). Для образования соединений необходимо выполнение следующих условий: освобождение свариваемых поверхностей от загрязнений, оксидов и адсорбированных на них инородных атомов; энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом; сближение свариваемых поверхностей на расстояния, сопоставимые с межатомным расстоянием в свариваемых заготовках. В зависимости от формы энергии, используемой для образования сварного соединения, все виды сварки разделяют на три класса: термический, термомеханический и механический. К термическому классу относятся виды сварки, осуществляемые плавлением с использованием тепловой энергии (дуговая, плазменная, электрошлаковая, электронно-лучевая, лазерная, газовая и др.). К термомеханическому классу относятся виды сварки, осуществляемые с использованием тепловой энергии и давления (контактная, диффузионная и др.). К механическому классу относятся виды сварки, осуществляемые с использованием механической энергии и давления (ультразвуковая, взрывом, трением, холодная и др.). Свариваемость свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия.
. Сварка – процесс получения монолитного соединения материала за счёт введения и термодинамически необратимого преобразования вещества и энергии в зоне соединения.
Особенности сварочных процессов:
1. Монолитность сварного соединения.
2. Преобразование энергии.
3. Преобразование вещества.
Монолитность соединения обеспечивается появлением атомно-молекулярных связей между элементарными частицами твёрдых тел.
Классификация способов сварки: 1 – холодная сварка; 2 – ультразвуковая сварка; 3 – сварка взрывом; 4 – сварка импульсная магнитным полем; 5 – диффузионная сварка; 6 – газопрессовая сварка; 7 – прессовая сварка с нагревом дугой, вращающейся в магнитном поле; 8 – контактная сварка; 9 – сварка жидким присадочным материалом с одновременным фрезерованием свариваемых кромок; 10 – плазменное нанесение покрытий; 11 – пайка; 12 – все способы сварки плавлением (дуговая, электроннолучевая, кислородно-ацетиленовая и т.д.); 13 – парофазное нанесение покрытий.