
- •«Статистика: теория и практика»
- •Раздел 1 Общая теория статистики 7
- •Введение
- •Модуль I Теоретический курс Раздел 1 Общая теория статистики
- •1.1. Статистика как наука и сфера деятельности
- •Введение в предмет и метод статистики
- •Основные понятия статистики
- •1.2. Статистическое наблюдение
- •1.3. Обобщающие статистические показатели
- •1.4. Сводка и группировка статистических данных
- •Группировка статистических данных
- •Комбинированные группировки
- •Техника проведения группировки.
- •Приемы вторичной группировки.
- •1.5. Способы изложения и наглядного представления статистических данных Статистические таблицы.
- •1.6. Средние величины
- •Содержание и значение средних величин.
- •Средняя арифметическая
- •Средняя гармоническая.
- •Медиана
- •1.7 Вариационный анализ
- •Показатели вариации.
- •Абсолютные и средние показатели вариации и способы их расчета.
- •Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения.
- •Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения.
- •Показатели относительного рассеивания.
- •1.8. Ряды динамики
- •Построение и анализ статистических рядов динамики. Установление вида ряда динамики.
- •Приведение рядов динамики в сопоставимый вид.
- •Определение среднего уровня ряда динамики.
- •Показатели изменения уровней ряда динамики.
- •1. Определяем цепные и базисные темпы роста (к).
- •2. Определяем цепной и базисный абсолютный прирост ( ).
- •3. Определяем цепные и базисные темпы прироста ( ).
- •Определение среднего абсолютного прироста, средних темпов роста и прироста.
- •Определение в рядах динамики общей тенденции развития.
- •Определение в рядах внутригодовой динамики.
- •1.9. Индексный метод
- •Статистические индексы.
- •Индивидуальные и общие индексы.
- •Агрегатные индексы.
- •Индексы с постоянными и переменными весами.
- •Средние индексы.
- •Расчеты недостающих индексов с помощью индексных систем.
- •1.10. Выборочное наблюдение
- •Выборочное наблюдение
- •Выборочное наблюдение.
- •Малая выборка.
- •Способы распространения характеристик выборки на генеральную совокупность.
- •Способы отбора единиц из генеральной совокупности.
- •1.11. Изучение взаимосвязи социально-экономических явлений
- •Изучение статистической связи. Виды взаимосвязей.
- •Раздел 2 Социально-экономическая статистика
- •2.1 Статистика макроэкономических расчетов Система национальных счетов
- •Система национальных счетов и ее показатели. Понятие снс.
- •Основные макроэкономические показатели.
- •Валовой национальный продукт (внп). Определение внп
- •Расчет внп
- •Метод расчета внп по расходам.
- •Метод расчета внп по доходам.
- •Внп в процессе перераспределения: система взаимосвязанных показателей.
- •Проблемы измерения показателя внп. Чистое экономическое благосостояние.
- •2.2. Валовой внутренний продукт (ввп) Общая характеристика ввп.
- •Методы расчета ввп
- •Ввп как сумма компонентов конечного использования
- •Ввп как сумма первичных доходов (распределительный метод).
- •Заключение
- •2.3. Статистика населения
- •Предмет, метод и задачи статистики населения
- •Источники статистических данных о населении
- •Переписи населения
- •Изучение численности, размещения и состава населения
- •Изучение структуры и размещения населения по территории
- •Изучение естественного движения и воспроизводства населения
- •Изучение миграции (механического движения) населения
- •Типы динамики численности населения
- •III и IV типы говорят о механическом приросте
- •V и VI типы говорят об естественной убыли населения
- •Расчеты перспективной численности населения
- •2.4. Тема 15 Статистика населения и занятости Трудовые ресурсы и занятость
- •Статистический анализ безработицы
- •2.5. Статистика финансов Предмет и основные разделы статистики финансов
- •Метод статистики финансов и его особенности
- •Понятие финансово-экономических расчетов и их место в статистике финансов
- •Общие положения статистики государственных финансов.
- •Категория бюджетной классификации в статистике государственных финансов.
- •Основные направления статистического анализа государственного бюджета. Абсолютные показатели статистики Госбюджета.
- •Основные направления статистического анализа государственного бюджета. Относительные показатели статистики Госбюджета.
- •2.6. Статистика предприятий Общие положения статистики финансов предприятий и организаций.
- •Раздел 2 содержит оборотные активы, раздел 3 - состояние расчетов с предприятиями России и зарубежных стран. Показатели:
- •Основные статистические показатели финансов предприятий и организаций.
- •Раздел 2 содержит оборотные активы, раздел 3 - состояние расчетов с предприятиями России и зарубежных стран.
- •Статистическое изучение источников формирования и направлений использования финансовых ресурсов. Показатели прибыли.
- •Показатели рентабельности предприятий и организаций
- •5) Коэффициент рентабельности оборотных активов:
- •6) Коэффициент рентабельности внеоборотных активов:
- •Показатели финансового состояния, финансовой устойчивости и платёжеспособности предприятий и организаций
- •2.7. Статистика финансового рынка Понятие финансового рынка
- •Статистика валютных курсов
- •Показатели валютных курсов
- •Основные понятия банковской статистики, структура системы показателей
- •Основные направления статистического анализа деятельности банков.
- •Категория процента в финансово-экономических расчетах.
- •Простые и сложные проценты.
- •Общие положения биржевой статистики.
- •Модуль II практические занятия Раздел 1 Вопросы к семинарам к Разделу 1, Модуль I
- •К Разделу 2, Модуль I
- •Раздел 2 Аналитическое задание
- •Раздел 3 Расчетное задание
- •3.1. Модуль №1.
- •3.2. Модуль №2
- •Модуль №2.
- •3.3. Модуль №3
- •3.4. Модуль №4
- •3.5. Модуль № 5.
- •Модуль IV контролирующие материалы Контрольная работа №1
- •Контрольная работа №2
- •Контрольная работа №3
- •Контрольная работа №4
- •Контрольная работа №5
- •Модуль III рекомендации для выполнения контрольных работ заочного обучения (10 вариантов работ)
- •Вопросы к аттестации
- •16. Выборочное наблюдение.
- •Вариант 1
- •Вариант 2.
- •Вариант 3.
- •Вариант 4.
- •Вариант 5.
- •Вариант 6.
- •Вариант 7.
- •Вариант 8.
- •Вариант 9.
- •Вариант 10.
- •Рекомендуемая литература:
- •Глоссарий
- •Список используемой литературы
- •Приложения
- •Развитие представлений о статистике
- •Краткая история статистических методов
- •Статистические методы
- •Классификация статистических методов
- •Прикладная статистика
- •Статистический анализ конкретных данных
- •Перспективы развития
Простые и сложные проценты.
Процентными деньгами или процентом называется абсолютная величина дохода от предоставленных в долг финансовых ресурсов.
Процентная ставка i – это отношение абсолютной суммы процентных денег, выплачиваемых в единицу времени, к величине ссуды. Процентная ставка чаще всего выражается в процентах.
Проценты могут выплачиваться двумя способами:
1) по мере их начисления
2) присоединяться к основной сумме долга (капитализация процентов).
Наращивание начальной суммы денег – это увеличение начальной суммы денег в результате начисления процентов.
Процентные ставки классифицируются по различным признакам:
По методу начисления процентов различают:
1) Процентные ставки. Они используются в том случае, если за базу для начисления процентов берётся первоначальная стоимость займа. Проценты, полученные по процентной ставке (ставке наращения), называются декурсивными.
2). Учётные ставки. Они используются в том случае, если при начислении процентов за основу берётся сумма, которая уплачивается должником, и проценты удерживаются при выдаче ссуды. Проценты, полученные по учётной ставке, называются также антисипативными.
По базе начисления процентов выделяют:
1) Проценты, начисленные на основе постоянной базы;
2) Проценты, начисленные на основе последовательно изменяющейся базы.
Во втором случае базой считается сумма, полученная на предыдущем этапе наращивания, или дисконтирования, т.е. проценты начисляются на проценты.
В большинстве случаев процентная ставка указывается в договоре из расчета на год. Если срок сделки составляет менее одного года, необходимо рассчитать, какая часть годового процента должна быть уплачена. Если при расчетах принимают число дней в году равным 360 (12 месяцев по 30 дней), то получают обыкновенные (коммерческие) проценты. Если же число дней в году принимают равным действительному числу дней в году – 365, 366, то получают точные проценты.
Процентные деньги (J) за полученную ссуду определяются на основе размера ссуды (P), процентной ставки (i) и времени пользования ссудой (n), которое измеряется в годах или долях года.
Если база для начисления процентов является постоянной в течение всего времени пользования ссудой (n), то при расчете процентных денег используются простые проценты
J1 = P * i – за первый год;
J2 = J1 + P * i = Р* i *2 – за второй год;
Jn = Jn-1 + Р * i = P * i * n – за n лет.
В этом случае сумма, которую обязан заплатить должник с наращенными за весь период процентами, т.е. наращенная сумма долга (S), определяется по формуле простых процентов.
S = Р * (1 + in)
Данная формула называется формулой простых процентов. При сроке пользования ссудой менее 1 года:
При сроке пользования ссудой менее одного года
n = д /Д,
где д – это число дней ссуды; Д – число дней в году ( 360, 365, 366)
Чаще всего простые проценты применяются при заключении сделок до одного года. Сложные проценты применяются при долгосрочных финансовых операциях сроком более 1, 3, 5 и т.д. лет. В случае сложных процентов процентная сумма за период n -лет рассчитывается следующим образом:
J = S – P = P * [(1 + i)n - 1]
Если база для начисления процентов периодически меняется в связи с присоединением суммы начисленных процентов к первоначальной сумме долга в течение пользования ссудой, то при расчетах используются сложные проценты:
S1 = Р + Р * i = Р * (1 + i ) — за 1-й год;
S2 = S1 * (l + i) = Р * (1 + i) * (1 + i) = Р * (1 + i )2 — за 2 года;
Sn = Р * (1 + i)n — за n лет.
Последняя формула называется формулой сложных процентов.
Сложные проценты применяются при долгосрочных финансовых операциях сроком более 1, 3, 5 и т.д. лет.
В случае сложных процентов процентная сумма J за период n лет рассчитывается следующим образом:
J = S - P = P * [(l+ i)n -1]
В зависимости от базы расчета процентов (постоянной или периодически изменяющейся) различают ставки наращивания (декурсивные) и учетные (антисипативные) ставки:
-
- декурсивная ставка; где S-P=J
– процентная
сумма за n
лет;
-
процентная сумма за год
-антисипативная
ставка.
Обе ставки используются в случае как простых, так и сложных процентов. При увеличении срока пользования ссудой п в случае сложных процентов различие между декурсивной и антисипативной ставками увеличивается быстрее, чем при простых процентах.
Зачастую в финансовой практике необходимо решить задачу об определении полученной суммы ссуды Р по известной наращенной сумме S и времени наращения п. В этом случае разность S - Р = Д называется дисконтом, а процесс решения задачи называется дисконтированием.
Различают два вида дисконтирования — математическое и банковское (коммерческое). Дисконтирование с использованием простых процентов:
1) математическое дисконтирование осуществляется по декурсивной ставке:
2) коммерческое дисконтирование осуществляется по антисипативной ставке:
P = S * (l - nd).