
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
Применение нечеткой логики обеспечивает принципиально новый подход к проектированию систем управления, “дорыв'' в новые информационные технологии, гарантирует возможность решения широкого круга проблем, в которых данные, цели и ограничения даются слишком сложными или плохо определенными и в силу этого не поддаются точному математическому описанию.
Возможны различные ситуации, в которых могут использоваться нечеткие модели динамических систем:
- когда имеется некоторое лингвистическое описание, которое отражает качественное понимание (представление) процесса и позволяет непосредственно построить множество нечетких логических правил;
- имеются известные уравнения, которые (хотя бы грубо) описывают поведение управляемого процесса, но параметры этих уравнений не могут быть точно идентифицированы;
- известные уравнения, описывающие процесс, являются слишком сложными, но они могут быть интерпретированы нечетким образом для построения лингвистической модели;
- с помощью входных/выходных данных оцениваются нечеткие логические правила поведения системы.
Первые результаты практического применения алгоритмов нечеткой к у правлению реальными техническими объектами были опубликованы в 1974 г. в работах профессора Лондонского Королевского колледжа Э.Х.Мамдани, посвященных проблеме регулирования парогенератора для электростанции. В этих работах была предложена сегодня классической структурная схема системы нечеткого управления в соответствии с рисунком 3.1.
Под нечетким управлением (Fuzzy Control) в данном случае понимается стратегия управления, основанная на эмпирически приобретённых знаниях относительно функционирования объекта (процесса ), представленных в лингвистической форме в виде некоторой совокупности правил.
Рисунок 3.1 - Структурная схема системы нечеткого управления
На рисунке 3.1 ДФ - динамический фильтр, выделяющий, помимо сигналов ошибок управления x1=r1-y1 и x3=r2-y2 ,производные от этих сигналов x2=x1 и x4=x3;
РНЛ- регулятор на основе нечеткой логики (“нечеткий регулятор”)включающий в себя базу знаний (конкретнее – базу правил) и механизм логического вывода;
r=(r1,r2)Т,x=(x1,x2,x3,x4)Т, u=(u1,u2)Т и y=(y1,y2)Т - соответственно векторы задающих воздействий (уставок) ,входов и выходов РНЛ, а также выходов объекта управления ;
т-операция транспонирования вектора.
В качестве входов и выходов РНЛ выступают:
x1=Pe-отклонение давления в паровом котле (y1) по отношению к его требуемому значению (r1);
x2=Cpe-скорость изменения Pe;
x3=Se-отклонение скорости изменения давления (y2) по отношению к его заданному значению (r2);
x4=Cse - скорость изменения Se;
u1=Hc-изменение степени подогрева пара;
u2=Tc- изменение положения дросселя.
Мамдани предложил рассматривать эти величины как лингвистические переменные, каждая из которых может принимать одно из следующих значений из множества
L={NB, NM, NS, NO, PO, PS, PM, PB}.
Здесь 1-я буква в обозначении указывает знак числовой переменной и соответствует английскому слову Negative (“отрицательное”) или Positive (“положительное”), 2-я буква говорит об абсолютном значении переменной : Big, Middle, Small или O (“близкое к нулю”).На пример, символ Ns означает ”отрицательное малое”.
Блок – схема нечеткого регулятора в общем случае принимает вид, изображенный на рисунок 3.2.
Как видно из данной схемы, формирование управляющих воздействий U1, U2 , … ,Um включает в себя следующие этапы:
Получение отклонений управляемых координат и скоростей их изменения - X1, X2 , … ,Xn;
«Фаззификация» этих данных, т.е. преобразование полученных значений к нечеткому виду, в форме лингвистических переменных;
определение нечетких (качественных) значений выходных переменных U1, U2 , … ,Um (в виде функций их принадлежности их соответствующим нечетким подмножествам) на основе заранее сформулированных правил логического вывода, записанных в базе правил;
«дефаззификация», т.е. вычисление реальных числовых значений выходов U1, U2 , … ,Um, используемых для управления объектом.
Рисунок 3.2 - Блок – схема нечеткого регулятора
Помимо представленного на рисунке 3.1. варианта «чистого» использования нечеткого управления, существуют и другие варианты построения ИСУ с нечеткими регуляторами. Так, в классической теории регулирования широкое распространение получило использование ПИД – регулятора, выходной сигнал которого вычисляется по формуле:
;
(3.1)
где параметры KП, KИ и KД характеризуют удельный вес соответственно пропорциональной, интегральной и дифференциальной составляющей и должны выбираться исходя из заданных показателей качества регулирования (время регулирования, перерегулирования, затухание переходных процессов). Возможное использование нечеткого регулятора для автоматической настройки (адаптации) указанных параметров ПИД – регулятора показано на рисунке3.3.
Рисунок 3.3 - Структура ИСУ с нечетким регулятором