
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
71. Дискретизация сигналов. Теорема Котельникова.
Первичный сигнал чаще всего представляет собой непрерывную ф-цию времени f(t). Однако во многих случаях целесообразно (или необходимо) превратить его в дискретный сигнал, т. е. заменить ф-цию f(t) последовательностью ее отсчетов f(tk), взятых через некоторый интервал времени Δt так, что tk=kΔt, где k=0, 1, 2... При такой дискретизации сигналов появляется возможность одновременной передачи нескольких сообщений по одному каналу путем временного уплотнения каналов, т. е. передачи в промежутках между отсчетами одного сигнала отсчетов других сигналов. При дискретизации сигналов появляются новые способы борьбы с помехами. Дискретный сигнал поддается кодированию, что облегчает задачу введения информации в ЭВМ и обмена информацией между ними.
Дискретизация сигналов во времени должна осуществляться с минимальной потерей информации. Это значит, что дискретные отсчеты непрерывной ф-ции времени должны быть достаточны для обратного преобразования их в такую же (или близкую) ф-цию времени (на приемном конце).
Теорема Котельникова
Теоре́маКоте́льникова - гласит, что, если аналоговый сигнал имеет ограниченный по ширине спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой, строго большей удвоенной верхней частотыfc. f>2fc
Такая
трактовка рассматривает идеальный
случай, когда сигнал начался бесконечно
давно и никогда не закончится, а также
не имеет во временно́й характеристике точек
разрыва. Именно это подразумевает
понятие «спектр, ограниченный частотой
».
Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́й характеристике. Соответственно, их спектр бесконечен. В таком случае полное восстановление сигнала невозможно и из теоремы Котельникова вытекают два следствия:
Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой f> 2fc, где fc — максимальная частота, которой ограничен спектр реального сигнала.
Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.
Говоря
шире, теорема Котельникова утверждает,
что непрерывный сигнал x(t) можно
представить в виде интерполяционного
ряда
где sinc(x)=sin(x)/x — функция sinc. Интервал дискретизации удовлетворяет ограничениям 0 <∆≤1/(2fc) Мгновенные значения данного ряда есть дискретные отсчёты сигнала x(k∆).
72. Систематические меры информации. Источники и приемники информации.
Понятие «информация» является сложным и имеет ряд аспектов; важнейшими из них являются семантический (Семантика — от греческого слова Simanticos — в переводе «обозначающий».) и математический. Математический (операционный), базирующийся на определении количественной меры.
В семантическом (смысловом) аспекте понятие «информация» является одним из первичных. Оно соответствует также терминам «сведения», «знания». По одному из определений информация — это то, «что дает возможность получателю логически сформулировать или изменить представление». При этом под «представлением» понимается «любая структура (образ, схема, модель), абстрактная или конкретная, свойства которой служат символом или соответствуют в определенном смысле свойствам некоторой другой структуры».
Информацию (сведения) об окружающем мире человек получает в процессе непосредственного взаимодействия с ним, изучения различных явлений, от других людей устно, с помощью книг, писем, радио, телевидения и прочих средств общения. Работа автоматических комплексов машин и агрегатов также включает информационный обмен между отдельными их устройствами и частями.
Всякий информационный обмен предполагает способность получателя воспринять информацию, а также воспользоваться уже имеющимся у него запасом тех или иных сведений. Сведения, которыми располагает потребитель информации до ее получения и на знание которых может рассчитывать отправитель, принято называть априорными (От лат. apriori— «изначально».).
Источники и приемники информации
В передаче информации участвуют отправитель (источник информации), получатель и технические средства связи, которые называют каналом связи (рис. 7-1). Отправителями и получателями информации могут быть как люди, так и технические устройства (приборы, индикаторы, машины). Информация, подлежащая передаче и выраженная в определенной форме, называется сообщением. Сообщения могут принимать самые различные формы: звук, текст, изображение и др. Различия в форме сообщений определяют выбор технических средств для их передачи. Например, для передачи текстовых сообщений разработана телеграфная аппаратура, для передачи звука — телефонная, движущееся изображение передается телевизионными устройствами, результаты измерений — телеметрическими устройствами, а для передачи команд управления (телеуправление) используются специальные линии управления. Отсюда вытекает классификация видов электрической связи: телеграфия, телефония, телевидение, телеметрия, телеуправление и др. Аналогично осуществляется классификация видов радиосвязи: радиотелеграфия, радиотелефония, радиотелеметрия и т. п.
Рис. 7-1. Схема передачи информации.
Для эффективной передачи информации на большие расстояния сообщение предварительно преобразуется в сигнал, который является физическим носителем, переносчиком сообщения. В радиотехнике таким переносчиком сообщений служат высокочастотные электромагнитные колебания — радиоволны. Отсюда название — радиосигнал.
Помимо способности распространяться, переносчик должен воспринимать информацию и доносить ее по возможности без потерь до получателя. Для этого один или несколько параметров переносчика изменяют по закону изменения передаваемого сообщения. Такой процесс получил название модуляции. В результате модуляции получаются, сигналы, несущие информацию и распространяющиеся в пространстве.