
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
68. Частотная модуляция. Спектры чм–колебаний.
69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
В приемник радиопеленгатора поступают две ЭДС: Ер — от рамки, Eа — от открытой антенны. Высокочастотные колебания, подводимые от рамки, меняют фазу с частотой 50 Гц (рис.8, а). Эти колебания складываются с колебаниями, поступающими от открытой антенны (рис.8, б), и на усилитель поступает суммированная ЭДС (рис.8, в). В первый полупериод низкой частоты 50 Гц сигнал высокой частоты рамки совпадает по фазе с сигналом высокой частоты открытой антенны, и поэтому результирующее напряжение будет равно сумме напряжений поступающих сигналов.
Во второй полупериод напряжение сигнала рамки находится в противофазе с напряжением открытой антенны и результирующее напряжение будет равно их разности. Далее суммарный сигнал усиливается и выпрямляется. Величина напряжения частотой 50 Гц на выходе приемника зависит от угла поворота рамки. Если плоскость рамки образует прямой угол с направлением на радиостанцию, рамка не принимает приходящие сигналы, следовательно, нет модуляции сигнала антенны, а на выходе приемника не будет напряжения частоты 50 Гц.
При переключении фазы образуется другая кардиоида, которая является как бы зеркальным отображением первой. Эти две кардиоиды и определяют направление сигнала на выходе пеленгатора. Одна из кардиоид — отрицательная, другая — положительная. Если преобладает ЭДС с отрицательным знаком, сигнал на выходе будет одного направления; при положительном знаке сигнал имеет другое направление.
Рис.8. Сложение колебаний рамки и открытой антенны в радиопеленгаторе после коммутации
Таким образом, в радиокомпасе можно наблюдать следующие виды модуляции: амплитудная и фазовая модуляция.
Наличие амплитудной модуляции указывает на то, что направление приходящего сигнала не совпадает с направлением нулевого приема рамочной антенны. Фаза модуляции определяется фазой рамочного сигнала по высокой частоте и указывает сторону отклонения приходящего сигнала относительно направления пеленга.
Спектры АМ и ФМ колебаний показаны на рис.2.27 и рис. 2.29.
Рис. 2.27. Спектр ФМ-сигнала
Рис. 2.29. Спектр сигнала при амплитудно-импульсной модуляции
70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
АРК – это амплитудные РНУ использующие метод минимума глубины ампл модуляции по схеме это замкнутые системы автоматического регулирования. Для формирования сигнала несущего информацию в АРК используют антенную систему, которая в простом случае состоит из одной подвижно – направленной(магнитная антенна) и ненаправленной антенны. Магнитные антенны могут быть без конденсаторов МП.
Структурная схема АРК
Рис 1. Структурная схема АРК
Модулированные колебания и их спектры
Под модуляцией понимается процесс, при котором один или несколько параметров несущего колебания изменяется по закону передаваемого сообщения. Получаемые в процессе модуляции колебания называют радиосигналами. В аналоговых системах связи радиосигналы передаются непрерывно во времени, и при модуляции могут изменяться амплитуда, частота или фаза несущего гармонического колебания. В зависимости от того, какой из названных параметров несущего гармонического колебания подвергается изменению, различают два основных вида аналоговой модуляции: амплитудную и угловую. Последний вид модуляции, в свою очередь, разделяется на частотную и фазовую.
Радиосигналы с амплитудной модуляцией. В процессе осуществления амплитудной модуляции несущего колебания
(2.54)
его амплитуда
должна изменяться по закону:
(2.55)
где
Uи
— амплитуда
в отсутствие модуляции;
—
угловая (круговая) частота;
—
начальная фаза;
—
полная (текущая или мгновенная)
фаза;
—
безразмерный коэффициент пропорциональности;
—
модулирующий сигнал.
Подставив формулу (2.55) в (2.54), получим общее выражение для АМ-сигнала
(2.56)
Обратимся к простейшему виду амплитудной модуляции — однотональной (от слова тон — звук одной частоты), когда модулирующий сигнал представляет собой гармоническое колебание
(2.57)
где
—
амплитуда;
—
круговая частота; Тх — период; —
начальная фаза.
Для
упрощения выкладок примем начальные
фазы несущего колебания и модулирующего
сигнала
и
Тогда,
подставив формулу (2.57) в (2.56), получим
выражение для АМ-сигнала
(2.58)
Обозначив
через
максимальное
отклонение амплитуды АМ-сигнала от
амплитуды несущей £/„ и проведя несложные
преобразования, запишем
(2.59)
Из соотношения (2.64) видно, что в спектре сложного АМ-сигнала, наряду с несущим колебанием, содержатся группы верхних и нижних боковых составляющих, являющихся масштабными копиями спектра модулирующего сигнала и расположенных симметрично относительно несущей частоты . Отсюда следует важный вывод: ширина спектра сложного АМ-сигнала равна удвоенному значению наивысшей частоты в спектре модулирующего сигнала ΩN.
Значительная доля мощности АМ-сигнала (не менее 50%) сосредоточена в несущем колебании, которое фактически не переносит никакой информации. Передаваемая же полезная информация (сообщение) заложена только в боковых составляющих радиосигнала, на долю которых приходится менее 50% мощности. Поэтому для более эффективного использования мощности передатчика радиотехнических систем передачи информации создают АМ-сигналы с подавленным несущим колебанием, реализуя так называемую балансную амплитудную модуляцию (БМ). Выражение для радиосигнала с балансной амплитудной модуляцией нетрудно получить из (2.60), она имеет следующий вид:
(2.65)
В современных системах связи часто приходится экономить не только мощность, но и полосу занимаемых частот. С этой целью формируют АМ-сигналы с подавленной верхней (или нижней) боковой полосой частот, получая колебание с одной боковой полосой (ОБП)
(2.66)
Другой, еще более эффективной с точки зрения энергетических показателей, разновидностью АМ-сигналов является однополосная амплитудная модуляция с подавленной несущей (ОБП-ПН):
Данный вид амплитудной модуляции представляет собой такое преобразование несущего колебания, при котором спектр радиосигнала полностью совпадает со спектром сообщения, перенесенным по оси частот в высокочастотную область нижней или верхней боковой полосы.