
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
Измерение
запаса топлива или масла в баке
летательного аппарата с помощью
электрического рычажно-поплавкового
топливомера (масломера) основано на
принципе преобразования неэлектрической
величины – переменной высоты уровня
жидкости в электрическую величину –
переменное активное сопротивление,
меняющееся в соответствии с изменением
уровня жидкости. Осуществляют это
преобразование реостатные датчики
рычажно-поплавкового типа, устанавливаемые
в баки летательного аппарата. Указателем
служит магнитоэлектрический логометр.
Датчик (рис. 2) состоит из поплавка 1, системы рычагов передающих движение от поплавка к движку потенциометра, сильфона 4 и самого потенциометра 9, выполненного в виде профилированной пластины с намотанной на ней константановой проволокой. При изменении уровня жидкости в баке поплавок через коромысло 2 и рычаги 5 и 7 перемещает движок по потенциометру. Сильфон служит для герметизации внутренней полости датчика.
Измерение сигнала датчика поплавкового топливомера может быть осуществлено либо непосредственно логометром указателя, либо компенсационным методом. При прямом измерении сигнала датчика логометром электрические поплавковые топливомеры работают по двум различным схемам включения — несуммирующей и суммирующей.
Электрические схемы включения
Принципиальная электрическая схема измерительной части поплавкового топливомера, собранного по компенсационной схеме, при измерении запаса топлива в одном баке приведена на рис. 10. Работа схемы происходит следующим образом. На потенциометр датчика R2 подается напряжение, пропорциональное полному объему, измеряемому данным датчиком. Потенциометр датчика профилируется в соответствии с тарировочными данными бака. С потенциометром датчика R2 в мостовую схему включен потенциометр отработки R1. Мост запитывается переменным током напряжением 115 В, f=400 Гц.
Рис.10. Компенсационная схема намерения уровня топлива
На потенциометр отработки R1 подается напряжение, равное по величине напряжению на датчике и противоположное по фазе. При определенном значении напряжения на потенциометре датчика R2 система находится в состоянии равновесия и разность потенциалов между точками Д и В равна нулю, т. е. сигнал на входе усилителя отсутствует.
При изменении напряжения на датчике вследствие изменения уровня, а следовательно, и количества топлива в баке между точками Д и В возникает разность потенциалов и на входе усилителя появляется сигнал, который после усиления поступает на управляющие обмотки двухфазного индукционного двигателя.
Двигатель отработает движок потенциометра R1 до сбалансированного положения моста и одновременно отработает стрелку указателя или через лентопротяжный механизм профильную ленту. Напряжение на входе усилителя становится равным нулю. Стрелка указателя устанавливается против деления шкалы, соответствующего количеству имеющегося в баке топлива.
Система будет находиться в равновесии, когда напряжение на участке АВ будет равно и противоположно по фазе напряжению на участке ДА.
При изменении суммарного объема топлива в двух баках пропорционально изменяется напряжение между точками А и В, которое равно сумме напряжений, снимаемых с потенциометров всех датчиков.
Напряжение на потенциометре отработки R1 в этом случае равно сумме напряжений, поданных на потенциометры всех датчиков.
Погрешности поплавковых топливомеров
Погрешности электрических поплавковых топливомеров складываются из следующих составляющих:
– погрешностей, являющихся следствием продольных и поперечных кренов и ускорений самолета;
– погрешностей, возникающих при неточной установке топливных баков и отклонений их размеров от полученных при расчете и тарировке;
– температурных погрешностей, вызванных изменением температуры топлива в баке и сменой сорта топлива;
– температурных погрешностей, появляющихся из-за изменения магнитных характеристик и электрических параметров при изменении температуры окружающей среды;
– погрешностей, возникающих из-за изменения напряжения источника питания.
Другие погрешности топливомеров являются общими для всех приборов.
Первые три группы погрешностей являются методическими, последние — инструментальными.
Методические погрешности могут быть компенсированы за счет введения в схему топливомера дополнительных чувствительных элементов, реагирующих на изменения плотности и диэлектрической проницаемости топлива, на крены и ускорения самолета.
Инструментальные погрешности, возникающие из-за изменения температуры, компенсируются подбором параметров схемы.