
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
47. Управление памятью и внешними устройствами.
Память состоит из ячеек, каждой из которых присваивается свой адрес. Совокупность адресов, которые могут быть сформированы процессором, образует адресное пространство МПС. Адреса памяти могут занимать все адресное пространство (АП) или его часть, а сама память независимо от ее технической реализации может быть условно представлена набором регистров (ячеек), число которых М, а разрядность — N (рис. 5.3).
Рис. 5.3. Условное представление памяти
Свои адреса имеют и внешние устройства (ВУ). Процессор при обмене данными всегда должен выбрать только одну из ячеек памяти или одно ВУ. Такой выбор осуществляется схемами декодирования адреса.
При управлении памятью и ВУ процессор должен вначале сформировать нужный адрес, который затем декодируется.
В МГТС применяют несколько способов формирования адресов.
При прямой адресации код адреса содержится в команде, подлежащей выполнению. Прямая адресация удобна, но удлиняет команды (увеличивает их разрядности), т.к. при значительных емкостях памяти разрядности адресов достаточно велики. В случае прямой регистровой адресации, когда операнд находится в одном из внутренних регистров процессора, адрес является малоразрядным, поскольку число таких регистров мало. В этом случае прямая адресация проявляет все свои достоинства.
При косвенной адресации в команде явно или неявно указывается регистр процессора, содержащий адрес операнда. Команда сохраняет компактность, но для ее выполнения требуется предварительная настройка — загрузка адреса в регистр (регистр косвенного адреса). Косвенная адресация удобна при обработке списков, когда настройка производится однократно, а очередной адрес получается модификацией предыдущего (изменением его на единицу).
При непосредственной адресации в команде содержится сам операнд.
Помимо перечисленных имеются и более сложные способы адресации: индексная, относительная и др., однако в простейших МП они не используются.
Возможность использования различных видов адресации сокращает объем и время выполнения программ.
С помощью того или иного способа адресации формируется физический адресный код, поступающий на шину адреса для выбора ячейки памяти или ВУ, с которыми взаимодействует процессор.
Адресация может быть абсолютной или неабсолютной. При абсолютной адресации обратиться к ячейке памяти или ВУ можно только по одному-единственному адресу. При неабсолютной адресации для ячейки памяти или ВУ можно выделить некоторую зону адресов. Число таких зон, естественно, будет меньше, чем число отдельных адресов, поэтому для указания зоны потребуется меньшая разрядность адреса. Иными словами, абсолютная адресация требует полного декодирования адреса, а неабсолютная — частичного, что упрощает схемы декодирования. Возможность использования неабсолютной адресации связана с наличием в АП "лишнего" пространства. Частным случаем неабсолютной адресации ВУ является так называемая линейная селекция (линейный выбор), подробнее рассмотренная ниже.
В рамках первой концепции для адресов памяти и ВУ выделяются части общего АП. К ВУ, обращение происходит так же, как и к ячейкам памяти, т.е. с помощью тех же команд и той же шины. Недостатком этой концепции является сужение АП для памяти, поскольку часть АП занимается внешними устройствами. Достоинство состоит в том, что над данными, получаемыми от ВУ, можно производить все те операции, которые имеются в системе команд процессора для данных, находящихся в ячейках памяти. Таких операций много и это способствует улучшению параметров программ и упрощению программирования. Концепцию "с обшей шиной" называют также вводом/выводом, отображенным на память.
В концепции "с раздельной шиной" ячейки памяти и ВУ имеют свои АП. При этом требуется наличие управляющих сигналов, определяющих, с каким типом объектов ведется обмен. Например, вводится сигнал Ю/М, указывающий, адресуется память или ВУ. При этом память может использовать все АП. Для обмена с ВУ обычно имеются только операции ввода IN port и вывода OUT port, и теряется возможность применять к данным от ВУ широкий набор команд, имеющихся для работы с данными, хранимыми в памяти.
Сигналы управления
Адресация — только часть процесса управления памятью и ВУ. Кроме адресов требуются стробы чтения и записи (RD и WR), задающие направление обмена, сигналы разрешения работы (CS, EN), признак обращения к ВУ или памяти (IO/М). Процессор обычно вырабатывает минимальную группу сигналов, тогда как в системном интерфейсе может быть предусмотрена несколько иная группа. В частности, МП К1821ВМ85А дает три сигнала: сигнал чтения (RD), записи (WR) и сигнал IO/М, т. е. обращения к ВУ при высоком уровне и к памяти — при низком. В системном же интерфейсе используется система из четырех сигналов: сигнала чтения из памяти MEMW, записи в память MEMW, чтения из ВУ IOW и записи в ВУ IOR.
Статические ОЗУ могут быть асинхронными или тактируемыми. Для тактируемых ОЗУ нужен импульсный характер какого-либо сигнала управления (обычно сигнала CS). В этом случае для повторного разрешения работы памяти нужно предварительно вернуть сигнал в пассивное состояние. Для придания сигналу импульсного характера можно применить, в частности, соотношение CS = МЕМК × MEMW. При этом обеспечивается пассивное состояние сигнала CS на интервалах, на которых не действуют ни сигнал чтения, ни сигнал записи (MEMR = MEMW = 1).
Иногда условием обмена является готовность к нему памяти или ВУ. Для выявления готовности применяют такой метод: появление адреса медленного устройства ведет к запуску генератора одиночного импульса необходимой длительности, на время существования которого сигнал готовности RDY снимается. Длительность интервала неготовности рассчитывается согласно требованиям медленного устройства. Процессор ждет появления сигнала готовности и только после его появления выполняет операцию обмена. Чтобы избежать потерь времени, желательно генерировать интервал неготовности с привязкой его к синхроимпульсам МПС.
Виды обмена
Выполнение процессором операций записи и чтения данных может проходить в режимах программно-управляемого обмена, прерывания и прямого доступа к памяти (ПДП).
Для обмена между памятью и ВУ без участия процессора используется режим ПДП. В обычном режиме пересылка данных между памятью и ВУ требует вначале приема данных в процессор, а затем выдачи их приемнику, что снижает темп передачи. В режиме ПДП процессор отключается от системных шин и передает управление обменом специальному контроллеру ПДП, что увеличивает темп передачи данных. Наличие ПДП повышает эффективность МПС.
Диапазон адресов, к которым может обращаться процессор (т. е. емкость АП) связан с разрядностью шины адреса m соотношением АП = 2m. Например, с помощью 16-разрядной шины адреса можно адресовать 216 = 64К объектов, с помощью 20-разрядной 1М объектов и т. д.
АП используется блоками ОЗУ, ПЗУ и ВУ, к которым обращается процессор. Распределение АП между указанными претендентами производится проектировщиком системы, имеющим известную свободу действий, хотя у конкретных процессоров могут быть особенности, заставляющие отдавать определенную область АП для адресации определенных объектов.
Для краткости записей адреса в АП обычно выражают в шестнадцатеричной системе счисления, для оценки емкостей АП используется часто единица измерения К = 210 = 1024 или М = 220 = 1048576.