
- •1. Измерительные схемы aстатического уравновешивания.
- •2. Виды интерфейсов применяемых в авиационных приборах и ивк. Опишите предложенную структуру передачи информации.
- •3. Канал измерения расхода
- •4. Принцип работы скоростного (турбинного) расходомера. Измерение мгновенного и суммарного расхода. Погрешности.
- •5. Принцип работы, виды поплавковых топливомеров. Схема включения, погрешности.
- •6. Принцип работы конструкции, диапазон измерения, применение, погрешности емкостных топливомеров. Линеаризация характеристик.
- •7. Опишите принцип работы схемы. Виды погрешностей данного топливомера.
- •8. Опишите принцип работы представленного датчика. Типы, назначение, применение, погрешности датчиков давления в авиационной технике.
- •9. Принцип работы манометра с потенциометрическим преобразователем.
- •10. Принцип работы мостовой схемы включения и компенсационной схемы включения терморезистивного термометра.
- •11. Принцип работы термоэлектрического термометра. Структурная схема, погрешности, методы устранения.
- •12. Назначение тахометров, виды. Принцип работы показанной схемы.
- •13. Способы измерения высоты л.А. Опишите принцип действия и работу указанной схемы.
- •14. Виды измеряемых скоростей л.А. Принцип действия и работы указанной схемы.
- •15. Назначение, принципдействия вариометра. Работа указанной схемы. Погрешности вариометра
- •18. Назначение радиовысотомера. Радиовысотомер малых и больших высот. Принцип действия радиовысотомера и его работа по указанной схеме.
- •19. Принцип работы радиокомпаса, его место в курсовых системах. Комплексирование радиокомпаса с другими указателями курса.
- •20. Назначение и виды курсовых систем. Состав кс и ее работа по указанной схеме.
- •16. Назначение магнитного компаса. Принцип действия, девиация, погрешности.
- •21. Система отображения информации на элт
- •17. Назначение центральнойгировертикали. Принцип действия.
- •29. Статические параметры логических элементов.
- •22.Электронные средства в системах отражения информации: электролюминесцентные, светодиодные, газоразрядные и плазменные уои.
- •1.Электролюминесцентные уои
- •2. Светодиодные уои
- •3. Газоразрядные и плазменные уои
- •23. Лазерные и голографические уои
- •25. Назначение системы регулирования и ограничения температуры газа в гтд. Опишите принцип работы указанной схемы.
- •24. Жидкокристаллические уои. Новые технологии, разработки, перспективы развития уои
- •26. Позиционные системы счисления. Двоичная и шестнадцатеричная арифметика.
- •27. Точность представления чисел. Вычислительные погрешности.
- •28. Логические элементы. Положительная и отрицательная логика.
- •30. Быстродействие логических элементов. Мощности потребления логических элементов.
- •31. Особенности логических выходов цифровых элементов. Элементы с тремя состояниями выхода. Выход элемента с открытым коллектором.
- •32. Двоичные дешифраторы. Приоритетные и двоичные шифраторы.
- •33. Мультиплексоры и демультиплексоры.
- •34. Цифровые компараторы. Схемы контроля цу. Мажоритарные элементы.
- •35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
- •36. Триггерные устройства. Классификация. Rs-, jk-, d- и t-триггеры и способы их описания.
- •37. Автоматы с памятью. Последовательностные схемы.
- •38. Регистры и регистрированные файлы. Сдвигающие и универсальные регистры. Буферные регистры. Шинные формирователи.
- •39. Классификация счетчиков. Двоичные счетчики.
- •41. Классификация зу.
- •42. Память с последовательным доступом: видеопамять, буфер fifo, кэш-память.
- •43. Пзу(rom)/ Масочные зу, зу типа prom, eprom, eeprom.
- •45. Структура микропроцессора.
- •48. Структура и формат команд мп. Способы адресации в мп.
- •46. Структура и функционирование мпс.
- •47. Управление памятью и внешними устройствами.
- •51. Амплитудно-импульсная модуляция. Спектр аим - колебаний. Почему она применена в представленной схеме уравновешивания?
- •49. Параллельные периферийные адаптеры.
- •55. Энтропия, количество информации по Шеннону.
- •50. Программируемые связные адаптеры.
- •52. Частотное и временное разделение каналов.
- •53. Фильтрация сигналов. Операторы фильтрации.
- •54. Вероятность и информация. Информационное содержание сигнала.
- •56. Описание непрерывных колебаний во временной и частотной областях.
- •57. Базисные функции. Ортогональные и ортонормированные функции.
- •58. Спектральная плотность случайных колебаний. “Белый шум” и его свойства.
- •66. Структурные меры информации.
- •59. Случайные колебания и корреляционные функции.
- •60. Способы повышения помехоустойчивости передачи информации.
- •61. Корреляционное разделение каналов и корреляционная фильтрация.
- •62. Демодуляция частотно – модулированных колебаний.
- •63. Виды каналов передачи информации.
- •64. Информация и фазы обращения информации.
- •65. Виды информации. Устранение избыточности информации.
- •67. Статистические меры информации. Информационное содержание сигнала.
- •68. Частотная модуляция. Спектры чм–колебаний.
- •69. Какие виды модуляции гармонических колебаний можно обнаружить в радиокомпасе и каковы их спектры?
- •70. Модуляция гармонических колебаний. Виды амплитудной модуляции и как они представлены в арк?
- •71. Дискретизация сигналов. Теорема Котельникова.
- •72. Систематические меры информации. Источники и приемники информации.
- •73. Геометрические меры информации. Каким образом они представлены в индикаторах сои?
- •79. Жизненный цикл изделия, ступени жизненного цикла по мс исо 9004.
- •74. Количество информации. Аддитивные меры Хартли.
- •75. Импульсная модуляция, шим, спектр широтно-импульсных колебаний.
- •76. Приведите структурную схему (содержание) производственного процесса (прп), показатели прп.
- •77. Типы производства изделий, признаки деления, сравнительная характеристика.
- •Подтипы серийного производства:
- •78. Технологический процесс (тп), определение, структуры и содержание, показатели тп.
- •80. Контроль качества печатных плат, классификация видов контроля, технологический процесс контроля. Характерные дефекты печатных плат.
- •81. Исходная информация при разработке тп сборки. Этапы разработки тп сборки, виды работ и документации по этапам.
- •82. Приведите классификацию видов пайки по различным признакам.
- •83. Технологическая система (тс) и ее структура, показатели качества функционирования тс.
- •84. Технологическая схема сборки (тсс), определение, виды тсс, порядок их разработки, документация.
- •95. Разработка маршрутного тп сборки модуля первого уровня (печатного узла), основные этапы (операции).
- •91. Технический контроль, основные операции входного контроля электронных элементов.
- •85. Качество изделия и его показатели, этапы и методы оценки качества.
- •86. Понятие технологичности конструкции изделий(тки), определение, системы показателей тки.
- •87. Порядок и зависимости при определении технологичности конструкции изделия по базовым показателям.
- •88. Виды электрических соединений, используемых при сборке ивк, основные параметры электрических соединений.
- •89. Приведите структурную схему типового тп сборки электронного узла ивк.
- •90. Технологическая подготовка производства (тпп), основные задачи, структура и стандарты единой тпп (естпп).
- •92. Виды и содержание основной технологической документации.
- •93. Этапы разработки тп сборки электронных узлов (аппаратуры).
- •94. Модульный принцип конструирования электронной аппаратуры, виды и содержание модулей.
- •96. Регулировка (настройка) электронной части ап (ивк), основные методы и их структура.
- •97. Методы обеспечения точности при сборке ап (ивк), их сущность и содержание.
- •98. Виды испытаний ап. Программа и методика климатических испытаний ап.
- •99. Понятие о точности размера детали или параметра. Шкала точностей (квалитеты), расчет единицы и величины допуска.
- •100. Маршрутный тп монтажа печатного узла с применением smd – компонентов.
- •101. Комплексы оборудования самолетов.
- •102. Основные характеристики и требования, предъявляемые к системам отображения информации.
- •103. Основные закономерности построения навигационных комплексов.
- •104. Навигационные комплексы на базе микропроцессоров.
- •105. Иерархические структуры навигационных комплексов. Системы искусственного интеллекта в навигационных комплексах.
- •106. Основные направления развития исследований и систем искусственного интеллекта.
- •107. Диалоговые системы искусственного интеллекта.
- •108. Навигационная бионика. Общность задач и основных принципов навигации в живой природе и технике.
- •109. Интеллектуальный биологический навигационный комплекс.
- •110. Системы искусственного интеллекта – системы, базирующиеся на знаниях.
- •111. Основные структуры систем искусственного интеллекта.
- •112. Представление знаний.
- •113. База знаний систем искусственного интеллекта.
- •114. Стратегия управления и механизм вывода в системах искусственного интеллекта.
- •115. Прямая цепочка рассуждений. База знаний. Обобщенный алгоритм работы.
- •База знаний.
- •Обобщённый алгоритм работы системы.
- •116. Обратная цепочка рассуждений. Дерево решений. База знаний. Обобщенный алгоритм работы.
- •117. Общие методы поиска решений в пространстве состояний.
- •118. Проблемы разработки бортовых оперативно-советующих экспертных систем.
- •119. Системы искусственного интеллекта с использованием нечеткой логики.
- •120. Нечеткие множества и лингвистические переменные.
- •121. Общие принципы построения интеллектуальных систем управления на основе нечеткой логики.
- •122. Процедура синтеза нечетких регуляторов.
- •123. Моделирование механизмов человеческого мышления. Модели нейронов.
- •124. Персептрон ф Розенблата
- •125. Общие принципы построения интеллектуальных сау с использованием нейронных сетей.
- •68. Частотная модуляция. Спектры чм – колебаний.
35. Контроль по модулю 2. Схемы свёртки. Контроль с использованием кода Хэмминга.
Контроль по модулю 2. Контроль правильности передач и хранения данных — важное условие нормальной работы ЦУ. В этой области простейшим и широко применяемым методом является контроль по модулю 2. Кодовая комбинация — набор из символов принятого алфавита. Код — совокупность кодовых комбинаций, используемых для отображения информации. Кодовое расстояние между двумя кодовыми комбинациями — число разрядов, в которых эти комбинации отличаются друг от друга. Минимальное кодовое расстояние — минимальное кодовое расстояние для любой пары комбинаций, входящих в данный код. Кратностью ошибки называют число ошибок в данном слове (число неверных разрядов). Из теории кодирования известны условия обнаружения и исправления ошибок при использовании кодов:
dmin=rобн+1; dmin=2rиспр+1; dmin=2rиспр+ rобн +1
где dmin — минимальное кодовое расстояние кода;
rобн и rиспр — кратность обнаруживаемых и исправляемых ошибок соответственно.
Вес комбинации - число единиц в данной комбинации. Для двоичного кода минимальное кодовое расстояние dmin = 1, поэтому он не обладает возможностями какого-либо контроля производимых над ним действий. Чтобы получить возможность обнаруживать хотя бы ошибки единичной кратности, нужно увеличить минимальное кодовое расстояние на 1. Это и сделано для кода контроля по модулю 2 (контроля по четности/нечетности).
При этом способе контроля каждое слово дополняется контрольным разрядом, значение которого подбирается так, чтобы сделать четным (нечетным) вес каждой кодовой комбинации. При одиночной ошибке в кодовой комбинации четность (нечетность) ее веса меняется, а такая комбинация не принадлежит к данному коду, что и обнаруживается схемами контроля. При двойной ошибке четность (нечетность) комбинации не нарушается — такая ошибка не обнаруживается. Легко видеть, что у кода с контрольным разрядом dmin = 2. Хотя обнаруживаются ошибки не только единичной, но вообще нечетной кратности, на величину dmin это не влияет. При контроле по четности вес кодовых комбинаций делают четным, при контроле по нечетности — нечетным. Логические возможности обоих вариантов абсолютно идентичны. После передачи слова или считывания его из памяти вновь производится сложение разрядов кодовой комбинации по модулю 2 (свертка по модулю 2) и проверяется, сохранилась ли четность (нечетность) веса принятой комбинации. Если четность (нечетность) веса комбинации изменилась, фиксируется ошибка операции.
Контроль по модулю 2 эффективен там, где вероятность единичной ошибки много больше, чем вероятность двойной (или вообще групповой).
Схемы свёртки. Контроль по модулю 2 реализуется с помощью схем свертки. Для практики типична многоярусная схема свертки пирамидального типа (рис. 35.1, а).
На рис. 35.1, а показана схема свертки байта. Для оценки аппаратной сложности и быстродействия подобных схем при разрядности свертываемого слова 2n (n — произвольное целое число) легко получить соотношения:
Nлэ = n/2 + n/4 +...+ n/n = n(1/2 + +...+ 1/n) = n-1; L = log2n,
где Nлэ — число логических элементов в схеме; L — ее логическая глубина.
Схемотехника сейчас сориентирована главным образом на работу с параллельными данными, однако не исключены ситуации обработки последовательных данных, когда слова передаются по одной линии последовательно разряд за разрядом. Для таких случаев целесообразно применять схему свертки (рис. 35.2, б), которая выдает результат всего через одну задержку после поступления последнего разряда a7.
Примером ИС свертки по модулю 2 может служить микросхема ИП5 серии КР1533.
Рис. 35.1. Схемы свертки пирамидального (а) и последовательного (б) типов.
Передача данных или их запись/считывание (если речь идет о памяти) с контролем показаны на рис. 35.2, в. Входные данные обозначены через D, на выходе из канала связи или памяти данные обозначены через D', поскольку вследствие ошибок они могут измениться.
Контроль по модулю 2 применим не только для операций передачи и хранения слов, но и для некоторых более сложных операций. В этих случаях недостаточно просто добавить к информационному слову контрольный разряд, а требуются более развитые операции.
Контроль с использованием кода Хемминга. Применение кодов Хемминга позволяет исправлять единичные ошибки. Добавление к коду Хемминга контрольного разряда, обеспечивающего четность/нечетность всей кодовой комбинации в целом, приводит к модифицированному коду Хемминга, с помощью которого можно исправлять единичные ошибки и обнаруживать двойные.
Методы контроля с помощью кодов Хемминга основаны на тех же идеях, что и контроль по модулю 2. Отсюда и область эффективного применения кодов Хемминга — устройства, в которых вероятность единичных ошибок много больше, чем вероятность групповых. Для получения кодовой комбинации кода Хемминга к информационному слову добавляется несколько контрольных разрядов. Для простоты просмотра кодовых комбинаций с целью определения значений контрольных разрядов примем, что контрольные разряды занимают позиции с номерами 2i (i = 0, 1, 2,...). Каждый контрольный разряд ассоциируется с некоторой группой разрядов кодовой комбинации и выводит вес группы, в которую он входит, на четность/нечетность.
Первый контрольный разряд входит в группу разрядов с номерами XX...XXI, где X означает произвольное значение. Иными словами в первую группу входят разряды с нечетными номерами: 1, 3, 5, 7, 9,... .
Второй контрольный разряд входит в группу разрядов с номерами, имеющими единицу во втором справа разряде, т. е. номерами XX...XIX. Это номера 2, 3, 6, 7, 10, 11,... .
Третий контрольный разряд входит в группу, у которой номера разрядов имеют единицу в третьем справа разряде: XX..1 XX, т. е. с номерами 4, 5, 6, 7, 12, 13, 14, 15,...
Контрольные разряды выводят веса своих групп на четность/нечетность. Далее для определенности примем, что ведется контроль по четности. После выполнения операции (например, считывания кодовой комбинации из памяти) производится столько проверок по модулю 2, сколько контрольных разрядов в кодовой комбинации, т. е. проверяется сохранение четности весов групп. Если в кодовой комбинации произошла ошибка, то в одних проверках она скажется, а в других — нет. Это и позволяет определить разряд, в котором произошла ошибка. Для восстановления правильного значения слова теперь остается только проинвертировать ошибочный разряд. Такова идея построения и использования кода Хемминга.