
- •Кафедра безопасности жизнедеятельности
- •Под общей редакцией доктора химических наук, профессора
- •Нижний Новгород 2000
- •Производственные опасности и вредности, их идентификация и анализ
- •1.1. Анализ травматизма и количественные характеристики риска
- •1.2. Коэффициент тяжести травматизма
- •1.3. Качественные и количественные характеристики риска
- •1.4. Показатель опасности
- •1.5. Коэффициент насыщенности механизмами производственной площади
- •Литература
- •2. Определение опасных зон и работ с повышенной опасностью
- •Границы опасных зон
- •Границы опасных зон
- •Приложение 1
- •Приложение 2
- •Литература
- •3. Обеспечение нормируемых климатических условий на рабочих местах
- •3.1. Требования к климатическим параметрам
- •3.2. Воздушные завесы
- •3.2.1. Конструктивные требования
- •Двусторонние воздушно-тепловые завесы
- •3.2.2. Расчет воздушных завес
- •Коэффициенты расхода проемов μпр для завес шиберного типа
- •Поправки коэффициента к1 на ветровое давление
- •Усредненные значения hрасч для одноэтажных производственных зданий
- •3.2.3. Завесы смешивающего типа
- •Поправочный коэффициент k2 для завес смешивающего типа
- •Коэффициент расхода μвх
- •3.3. Воздушное душирование
- •Расчетные нормы температур и скорости движения воздуха при воздушном душировании
- •3.4. Порядок расчета
- •4. Снижение запыленности на рабочих местах (порядок расчета систем аспирации)
- •Поправочный коэффициент k1
- •Поправочный коэффициент k2
- •Коэффициенты местных сопротивлений ζ циклонов диаметром 500 мм и оптимальные скорости движения воздуха
- •Коэффициент Δζo
- •5. Расчет шумового режима в помещениях
- •5.1. Общие понятия и определения
- •Частотный множитель μ
- •5.2. Расчет звукоизоляции ограждающих конструкций
- •Звукоизолирующая способность стенок кожуха
- •5.3. Расчет и выбор конструкций звукопоглощающей облицовки
- •5.4. Приложения
- •Акустические характеристики звукопоглощающих материалов
- •Звукоизолирующая способность стен и перегородок акустических однослойных конструкций и перекрытий, дБ
- •Звукоизолирующая способность дверей и окон, дБ
- •6. Защитное заземление
- •6.1. Основные понятия. Определения
- •Минимальные размеры стальных заземлителей и заземляющих проводников, мм
- •Наименьшие сечения медных и алюминиевых заземляющих проводников в электроустановках напряжением до 1000 в
- •Наибольшие допустимые сопротивления заземляющих устройств
- •Наибольшие допустимые сопротивления заземляющих устройств
- •Значение сезонных повышающих коэффициентов к
- •6.2. Расчет заземления
- •Формулы для вычисления сопротивления единичных заземлителей
- •Коэффициенты использования ηr вертикальных электродов группового заземления (труб, уголков и т. П.) без учета влияния полосы связи
- •6.3. Примеры расчета
- •7. Защитное зануление
- •7.1. Основные понятия. Определение
- •7. 2. Расчет защитного зануления
- •Значение коэффициента k
- •Значение Iнпл.Вст стандартных предохранителей для сетей напряжением 220 и 380 в
- •Приближенные расчетные полные сопротивления Zт, Ом, масляных трансформаторов
- •Условные расчетные сопротивления трансформаторов, приведенных к напряжению400 в
- •Активные г и индуктивные х сопротивления стальных проводников при переменном токе (50 Гц), Ом/км
- •3. Порядок расчета зануления
- •4. Пример расчета
- •8. Защита от разрядов статического электричества
- •8.1. Общие сведения. Понятия
- •Минимальная энергия, Wmиb, необходимая для воспламенения некоторых пылевоздушных смесей, мДж
- •Ориентировочные значения разности потенциалов (Δφ, кВ), возникающей при электризации диэлектриков в некоторых технологических процессах
- •Характер физиологического воздействия на человека заряда статического электричества, накапливающегося на его теле
- •8.2. Способы устранения опасности статического электричества
- •8.2.1. Заземление
- •8.2.2. Уменьшение объемного и поверхностного удельных электрических сопротивлений
- •8.2.3. Ионизация воздуха
- •8.2.4. Контроль за параметрами статического электричества
- •Характеристики приборов по измерению параметров статического электричества
- •8.2.5. Порядок определения возможности накопления статического электричества
- •9. Защита от электромагнитных полей
- •9.1. Общие понятия. Техническое нормирование
- •Гигиенические нормы для персонала, работающего на электроустановках с токами промышленной частоты (50 Гц) и напряжением 400 кВ и выше
- •Предельно допустимые значения энергетической экспозиции
- •Предельно допустимые уровни напряженности электрической и магнитной составляющих в диапазоне частот 30 кГц-300 мГц в зависимости от продолжительности воздействия
- •Предельно допустимые уровни плотности потока энергии в диапазоне частот 300 мГц-300 гГц в зависимости от продолжительности воздействия
- •Предельно допустимые уровни эми рч для населения, лиц, не достигших 18 лет, и женщин в состоянии беременности
- •Предельно допустимые уровни эми рч, создаваемых телевизионными станциями
- •Международная классификация электромагнитных волн по частотам
- •9.2. Источники электромагнитных полей
- •9.2.1. Природные источники эмп
- •9.2.2. Антропогенные источники эмп
- •9.2.2.1. Источники эмп пч в жилых помещениях
- •Источники эмп диапазона 0 Гц-ЗкГц
- •Характерные параметры эмп источников диапазона 0 Гц-3 кГц
- •9.2.2.2. Источники эмп диапазона 3 кГц-300 гГц
- •Характерные параметры источников эмп диапазона 3 кГц-300 гГц*
- •Максимальные значения напряженности поля базовых станций
- •Максимальные уровни напряженности эмп мобильных средств связи автомобильной установки
- •Интенсивность эми на рабочих местах ряда специальностей
- •9.3. Способы защиты от эмп
- •9.4. Экранирование
- •9.4.1. Расчет экранов
- •Значения эффективности экранирования полей высоких частот металлическими листами и сетками
- •9.4.2. Поглощающие экраны
- •Специальные материалы для изготовления средств защиты от облучения эмп
- •9.4.3. Отражающие экраны
- •Основные размеры образцовых сетчатых экранов, используемых для защиты от эмп
- •Экранирующие материалы для изготовления средств защиты от эми рч в диапазоне частот 30 мГц-40 гГц
- •Основные характеристики приборов, рекомендуемых для измерения интенсивности эми рч
- •9.5. Порядок определения способов защиты человека от эмп
- •10. Молниезащита зданий и сооружений
- •10.1. Общие понятия о молниезащите и зонах защиты молниеотводов
- •Категории помещений по взрыво- и пожароопасным свойствам помещения
- •Зоны защиты молниеотводов
- •10.2. Конструкция молниеотводов
- •Размеры молниеприемников, токоотводов и электродов заземлителей
- •10.3. Заземлители молниезащиты
- •Типовые конструкции заземлителей молниезащиты и их сопротивления растекания тока промышленной частоты
- •10.4. Допустимые расстояния s от заземлителя до других сооружений
- •Наименьшие допустимые расстояния s
- •Наименьшие допустимые расстояния Sв
- •10.5. Нормирование сопротивления заземления
- •Приближенные значения импульсных коэффициентов простейших заземлителей
- •10.6. Область использования заземлителей
- •10.7. Порядок расчета молниезащиты
- •10.8. Пример расчета
- •Типы зон и категории устройств молниезащиты зданий и сооружений
- •Интенсивность грозовой деятельности
- •11. Обеспечение пожарной безопасности
- •11.1. Расчет численности пожарных автомобилей
- •11.2. Защита автоматическими установками тушения (аупт) и обнаружения пожара (ауоп)
- •11.3. Определение необходимого количества первичных средств пожаротушения
- •Нормы оснащения помещений ручными огнетушителями
- •Нормы оснащения помещении передвижными огнетушителями
- •12. Расчет освещенности производственных помещений
- •12.1. Основные понятия
- •12.2. Расчет освещенности, общие требования
- •12.3. Расчет естественного освещения
- •Нормированные значения кео в помещениях производственных зданий, расположенных севернее 45° и южнее 60° северной широты
- •Значение световой характеристики окна ηо
- •Значение световой характеристики фонарей ηф
- •Значение коэффициента к, учитывающего затенение окна противостоящими зданиями
- •Значение общего коэффициента светопропускания τо
- •Значение коэффициента r1, учитывающего отраженный свет при одном боковом освещении
- •Значения коэффициента r1, учитывающего отраженный свет при верхнем освещении
- •Коэффициенты отражения различных поверхностей ρср
- •12.4. Искусственное освещение
- •12.4.1. Выбор источника света
- •Размеры люминисцентных ламп
- •Значения светового Fл потока ламп накаливания
- •Значения светового потока люминисцентных ламп
- •Коэффициенты использования светового потока различных ламп η
- •Освещенность Еср при равномерном размещении приборов общего освещения
- •Рекомендуемые отношения l/Нр расстояний l между светильниками и высотой подвеса Нр над рабочей поверхностью (рис. 12.5)
- •12.4.2. Осветительные приборы
- •12.4.3. Выбор системы освещения
- •12.4.4. Выбор типа светильников общего назначения
- •12.4.5. Размещение светильников общего освещения
- •12.5. Расчет искусственного освещения
- •12.5.1. Общие требования к расчету
- •12.5.2. Расчет по методу коэффициента использования
- •12.5.3. Расчет по методу удельной мощности (Метод Ватта)
- •12.6. Примеры расчета
- •12.6.1. Естественное освещение
- •12.6.2. Искусственное освещение
- •12.7. Приложения
- •12.7.1. Нормы освещенности
- •12.7.2. Коэфициент запаса и срока чистки светильников и оконного остекления
- •Коэффициент запаса и срок чистки светильников и оконного остекления
- •12.7.3. Определение разряда работ при расстоянии от объекта различения до глаз работающего более 50,5 м
- •12.7.4. Эксплуатационные группы светильников
- •12.7.5. Рекомендуемые источники света для производственных помещений
- •Рекомендуемые источники света при системе общего освещения
- •Рекомендуемые источники света при системе комбинированного освещения
- •Рекомендуемые источники света для общего освещения жилых и общественных зданий
- •12.7.5. Характеристики светильников
- •13. Защита атмосферного воздуха от загрязнения
- •13.1. Анализ исходных данных
- •13.1.1. Характеристика местности
- •13.1.2. Характеристика предприятия
- •Предельно допустимые концентрации вредных веществ в атмосферном воздухе для населенных мест
- •Пример расчета параметров п и ф [7]:
- •Пример расчета параметра п (все данные, необходимые для расчета параметра п, имеются в форме 2-т (воздух))
- •13.1.3. Характеристика источника (источников) загрязнения
- •13.2. Определение расхода выбросов
- •13.3. Определение массы токсичных веществ
- •13.3.1. Расчет массы загрязняющих веществ в выбросах промышленных котлов
- •Расчет выбросов оксида углерода
- •Расчет выбросов диоксида азота
- •Расчет выбросов оксида серы
- •Расчет выбросов твердых частиц
- •13.3.2. Расчет массы выбросов загрязняющих веществ от подвижных источников
- •13.3.3. Расчет выбросов загрязняющих веществ от автозаправочных станций (азс)
- •13.3.4. Расчет массы загрязняющих веществ, выбрасываемых различными технологическими процессами
- •Удельные нормы выброса токсичных веществ различным оборудованием
- •13.4. Расчет рассеивания токсичных веществ в атмосфере
- •13.4.1.Определение максимальных значений приземных концентраций токсичных веществ
- •13.4.2. Определение опасной скорости ветра
- •13.4.3. Определение расстояния Хм
- •13.4.4. Расчет распределения концентрации токсичных веществ
- •Сводная таблица распределения концентраций вдоль оси факела при um
- •13.4.5. Расчет распределения концентраций токсичных веществ при скоростях ветра, отличных от опасной
- •13.4.6. Расчет загрязнения атмосферы выбросами группы источников и площадных источников
- •13.5. Графическое изображение полей приземных концентраций токсичных веществ
- •13.5.1. Расчет и графическое изображение подфакельных концентраций токсичных веществ
- •Расчет подфакельиых приземных концентраций
- •13.5.2. Построение зоны влияния источника
- •13.5.3. Расчет и построение зоны активного загрязнения
- •13.5.4. Построение санитарно-защитной зоны (сзз) по фактору загрязнения атмосферного воздуха
- •13.6. Выбор метода снижения загрязнения атмосферы
- •13.6.1. Определение необходимой степени снижения выбросов токсичных веществ
- •13.6.2. Выбор комплексных природоохранных мероприятий
- •13.7. Технико-экономическая оценка природоохранных мероприятий
- •Базовые нормативы платы за выброс в атмосферу загрязняющих
- •13.8. Расчет предельно допустимых выбросов (пдв)
- •14. Водопользование промышленных предприятий
- •14.1. Расчет сооружений локальной очистки поверхностных стоков
- •14.1.1. Определение расхода поверхностного стока
- •Параметры к расчету интенсивности дождя для определенных регионов
- •14.1.2. Устройство дождеприемников
- •14.1.3. Применение решеток
- •14.1.4. Выбор песколовок
- •14.1.5. Определение характеристик отстойника
- •14.2. Расчет реагентов для обработки воды систем оборотного водоснабжения
- •14.3. Подготовка воды для использования в системе замкнутого водопользования
- •14.4. Расчет требуемой степени очистки сточных вод
- •15. Твердые отходы производства, их использование и переработка
- •15.1. Основные понятия
- •15.2. Экологические проблемы, порождаемые твердыми промышленными отходами
- •15.3. Управление отходами
- •15.4. Экономика обращения с отходами. Бизнес на отходах
- •15.5. Правила обращения с отходами на предприятии, где они образуются
- •15.6. Переработка отходов
- •15.7. Лицензирование обращения с отходами
- •15.8. Отходы на пороге XXI века
- •Литература
- •16. Расчет платежей за загрязнение окружающей среды и размещение отходов
- •16.1. Экономическое регулирование природопользования
- •16.2. Схема расчета платежей за выбросы, сбросы зв и размещение отходов в атмосферу
- •16.2.1. Расчет платы за выбросы зв в атмосферу от стационарных источников
- •16.2.2. Расчет платы за выбросы загрязняющих веществ в атмосферу от передвижных источников
- •16.2.3. Расчет платы за сбросы зв в водные объекты
- •16.2.4. Расчет платы за размещение отходов
- •16.3. Выполнение практической работы
- •16.3.1. Постановка задачи
- •16.3.2. Порядок выполнения расчетов
- •Заключение
- •17. Организация санитарно-бытового обслуживания
- •17.1. Санитарно-бытовые помещения общего назначения
- •17.2. Шкафы для хранения одежды в санитарно-бытовых помещениях промышленных предприятий
- •17.3. Помещения здравоохранения
- •17.4. Помещения предприятий общественного питания
- •17.5. Кабинеты охраны труда
- •17.6. Санитарно-бытовые помещения строительно-монтажных организаций Гардеробные
- •Уборные
- •Количество унитазов в уборных
- •Душевые
- •Ручные и ножные ванны
- •Помещения для личной гигиены женщин
- •Помещения для стирки, химической чистки, сушки и ремонта рабочей одежды и обуви
- •Устройства питьевого водоснабжения
- •Общие требования к размещению, конструкциям и оборудованию сани гарно-бытовых помещений на строительной площадке
- •1.2. Кафедры консультирующие разделы дипломного проекта и распределение нормативного времени на консультацию студентов по кафедрам
- •Чертежи
- •1.3. Разделы дипломного проекта
- •Раздел 1
- •1. Характеристика производства
- •2. Основные экологические опасности и их анализ на соответствие основным нормативным требованиям (пдк, пдв).
- •3. Производственные опасности и вредности, их идентификация и анализ
- •2. Рекомендации по прохождению преддипломной практики для студентов специальности "безопасность жизнедеятельности" - 330100
- •Задание на дипломный проект (дипломную работу)
- •3. Рекомендации по изучению и описанию технологической части производства
- •3.1. Размещение оборудования
- •3.2. Основы материального баланса
- •4. Разработка вопросов гражданской обороны и безопасности в чрезвычайных ситуациях
- •Инженерные расчеты систембезопасности труда и промышленной экологии
- •603134, Нижний Новгород, ул. Костина, 2.
4. Снижение запыленности на рабочих местах (порядок расчета систем аспирации)
Исходными данными для расчета являются:
- минералогический состав пыли;
- основные свойства пыли - плотность (насыпная и истинная), коагуляция, смачиваемость, слипаемость, абразивность, удельное электрическое сопротивление;
- свойства газового потока - температура, плотность, кинематическая или динамическая вязкость;
- начальная концентрация пыли в месте ее образования;
- дисперсный состав пыли, т. е. содержание фракций по "частным остаткам" или по "полным проходам".
Последовательность расчета:
1. По ГОСТ 12.2.043-80 выделяется пять основных классификационных групп аэрозолей:
I - очень крупнодисперсная пыль;
II - крупнодисперсная пыль (например, песок для строительных растворов по ГОСТ 8736-77); ,
III - среднедисперсная пыль (например, цемент);
IV - мелкодисперсная пыль (например, кварц молотый по ГОСТ 9077-82);
V - очень мелкодисперсная пыль.
Классификационная группа пыли определяется по номограмме (рис. 4.1). Для пользования номограммой следует иметь результаты ситового анализа пыли. Определяется дисперсный состав по "полным проходам". На номограмму наносятся точки, соответствующие содержанию первых пяти фракций, и, соединяя их, получим линию, указывающую на классификационную группу.
Рис. 4.1.
Классификационная номограмма пылей
по ГОСТ 12.2.043-80.
Таблица 4.1
Классификационная группа пыли по слипаемости |
Характеристика классификационной группы |
Характерные пыли |
I |
Не слипающаяся ≤ 60 Па |
Шлаковая пыль; песок кварцевый |
II |
Слабослипающаяся 60-300 Па |
Коксовая пыль; апатитовая сухая пыль; летучая зола при слоевом сжигании углей всех видов и при сжигании сланцев; магнезитовая пыль; доменная пыль (после первичных осадителей); шлаковая пыль |
III |
Среднеслипающаяся 300-600 Па |
Летучая зола при пылевидном сжигании каменных углей без недожога; торфяная зола; влажная магнезитовая пыль; металлическая пыль; колчеданы; оксиды свинца, цинка и олова; сухой цемент; сажа; сухое молоко; мучная пыль; опилки |
IV |
Сильнослипающаяся > 600 Па |
Гипсовая и алебастровая пыль; нитрофоска; двойной суперфосфат; цементная пыль, выделенная из влажного воздуха; волокнистая пыль (асбест, хлопок, шерсть и др.); все пыли с размером частиц < 10 мкм |
Таблица 4.2
Класс пылеуловителя |
Размер эффективно улавливаемых частиц пыли, мкм |
Группа пыли по дисперсности |
Эффективность пылеуловителей, % |
1 |
Более 0,3-0,5 |
V IV |
<80 99,9-80 |
2 |
Более 2 |
IV III |
92-45 99,9-92 |
3 |
Более 4 |
III II |
29-80 99,9-99 |
4 |
Более 8 |
II I |
99,9-95 >99,9 |
5 |
Более 20 |
I |
>99 |
Рис. 4.2. Схема
системы аспирации.
1 - Пылеприемник;
2 - Задвижка;
3 - Насадка с зонтом
АС8-400;
4 - Переходный
патрубок;
5 - Вентилятор
пылевой типа ВЦП6-45-5-01У2;
6
- Батарейный циклон типа БЦШ-400.
Рис.
4.3. Аэродинамическая характеристика
ВЦП-6-45-5.
Пример. Определить классификационную группу пыли, если по опытным данным она имеет следующий дисперсный состав:
Размер частиц, мкм..... < 5 5-10 10-20 20-40 40-60 60
Содержание фракций по "частным остаткам" R(d), % по массе......... 10 16 24 22 12 16
Решение: Рассчитываем дисперсный состав пыли по "полным проходам":
Размер частиц, мкм............. <5 <10 <20 <40 <60
Содержание фракций по "полным проходам" D(d), % по массе......... 10 26 50 72 84
Наносим точки, соответствующие содержанию первых пяти фракций по "полным проходам" на номограмму (рис. 4.1) и, соединив их, получим линию, расположенную в зоне III. Следовательно, данная пыль относится к III классификационной группе. Распределение дисперсности частиц за пределом интервала 5<d<60 известно. Оно может сохранять линейный характер, например для области размеров <5 мкм, но может быть усеченным, как показано на рис. 1, для области размеров >60 мкм. При оценке дисперсности пыли эта область не учитывается.
В тех случаях, когда график фракционного состава аэрозоля, нанесенный на классификационную номограмму, пересекает границы зон, пыль относят к классификационной группе высшей из зон.
2. Все пыли IV и V групп дисперсности практически относятся к сильнослипающимся пылям, а пыли III группы - к среднеслипающимся. В табл. 4.1 дана характеристика пыли по слипаемости.
3. Частицы мельче 10 мкм, в особенности мельче 5 мкм, как правило становятся несмачиваемыми (гидрофобными) независимо от их состава.
4. В вентиляционной практике взрывоопасной пылью считаются аэрозоли, нижний концентрационный предел распространения пламени которых менее 65 г/м3. Пыли, у которых нижний предел более 65 г/м3, считаются горючими.
5. Используя технологическую карту производства, цеха, участка, составляется схема системы аспирации (рис. 4.2), стр. 243 [2]. Порядок расчета воздуховодов систем аспирации приведен в работе [2, стр. 236].
6. Подбирается тип пылевого вентилятора. Характеристики вентиляторов приведены на рис. 4.3 и в Справочнике [2, стр. 246] и [3, стр. 433]. Для этого определяется требуемый расход воздуха Q и потери давления в сети Р.
6.1. Объем воздуха следует определять по формулам в табл. 11, 10 [1] и таблицам, приведенным в работе [7], как сумму, которая складывается из объема воздуха, вносимого в укрытие поступающим материалом (Qэ), и объема (Qн), просасываемого через неплотности укрытия для предотвращения поступления пыли в помещение:
Q = Qэ + Qн, м3/ч
Концентрация аэрозолей в выбросах уходящего воздуха при расходе воздуха более 15000 м3/ч:
Сух = 100·R,мг/м3, (4.1)
где:
R - коэффициент, принимаемый в зависимости от предельно допустимой концентрации (ПДК) аэрозолей в воздухе рабочей зоны производственных помещений, согласно ГОСТ 12.1.005 - 88, мг/м3:
ПДК ........................ До 2 2-4 4-6 6-10
R ............................. 0,3 0,6 0,8 1,0
Концентрацию аэрозолей в выбросах объемом менее 15 тыс. м3 с учетом меньшего влияния на загрязнение атмосферы допускается принимать несколько большей по формуле
Сух =(160 - 4·Q)·R, мг/м3, (4.2)
где:
Q - объем выброса, тыс. м3.
Концентрация, рассчитанная по данным формулам, проверяется на условие, что в результате рассеивания выброса в атмосфере концентрация аэрозолей с учетом фоновой загрязненности атмосферы не превышает:
а) в приземном слое атмосферы населенных пунктов - концентраций, указанных в СН 245-71 [6], но не более ПДК для населенных мест [8];
б) в воздухе, поступающем в производственные и вспомогательные здания и сооружения через приемные отверстия систем приточной вентиляции и через открывающиеся проемы - 30 % ПДК тех же аэрозолей, в рабочей зоне помещений - по ГОСТ 12.1.005-88. Валовой выброс каждого источника не должен превышать установленного для него ПДВ.
Если известно количество образующей пыли (М, мг/ч), то требуемую производительность вентилятора можно определить, как:
Q = М /(Спр - Сух) ,
где:
Спр - концентрация пыли в приточном воздухе, мг/м3;
Сух - концентрация пыли в уходящем воздухе.
6.2. Потери давления в сети определяются по формуле:
Р = Ртр·L + Рм, Па,
где:
Ртр - удельная потеря давления на трение на 1 п. м. воздуховода, Па;
L - длина участка воздуховода, м;
Рм - потеря давления на местные сопротивления, Па.
Расчетная таблица сети воздуховодов систем аспирации приведена в работе [2, стр. 244].
Удельную потерю давления на трение для круглых воздуховодов определяют по формуле:
Ртр= (λ/d)·(V2·ρ/2)
где:
λ - коэффициент сопротивления трения;
d - диаметр воздуховода, м;
V - скорость воздуха в воздуховоде, м/сек;
ρ - плотность воздуха, кг/м3;
V2·ρ/2 - скоростное (динамическое) давление воздуха, Па.
Значения λ/d следует принимать по табл. 22.56 [2].
Для воздуховодов прямоугольного сечения за величину d принимают эквивалентный диаметр d., таких круглых воздуховодов, которые при одинаковой скорости имеют те же потери давления на трение, что и прямоугольные воздуховоды:
dэ= 2ab/(a + b), м,
где:
а и b - размеры стенок прямоугольного воздуховода, м.
Потери давления на местные сопротивления определяются по формуле:
Pм = eζ·(V2·ρ/2), Па,
где:
ζ - сумма коэффициентов местного сопротивления.
Коэффициенты местных сопротивлений приведены в таблицах гл. 22 [2].
Пример расчета потерь давления в сети воздуховодов приведен в табл. 22.58 [2].
6.3.Для определения площади сечения воздуховодов следует воспользоваться рекомендуемыми скоростями движения воздуха, которые приведены в табл. 22.57 [2].
Сечение воздуховодов должно обеспечивать скорость движения воздуха не ниже допустимой для пыли данного вида:
V = 1,3·(ρм)1/3,
где:
ρм - объемная масса материала, кг/м3
При подъеме механических примесей на высоту следует учитывать формулы (22.16), (22.17) [2].
7. По расходу воздуха и величине потерь давления подбираем тип и номер требуемого вентилятора (рис. 4.3), пользуясь характеристикой пылевых вентиляторов, которые также приведены в приложениях Справочника [2].
8. Выбор и расчет пылеуловителей.
Пылеуловители, применяемые для очистки воздуха от аэрозольных частиц, делятся на 5 классов (табл. 4.2).
Пылеуловители 1 класса отличаются большим расходом энергии (высоконапорные пылеуловители Вентури), сложностью и дороговизной эксплуатации (многопольные электрофильтры, рукавные фильтры и пр.)
В табл. 4.2 указаны границы эффективности пылеуловителей каждого из классов на основе классификации аэрозолей по рис. 4.1. Первое из значений эффективности относится к нижней границе соответствующей зоны, вторые - к верхней. Эффективность рассчитана из условий отделения от воздуха только практически полностью (эффективно) улавливаемых частиц, размер которых указан в табл. 4.2. Действительная эффективность пылеуловителей больше за счет частичного улавливания частиц по размеру меньших, чем указано в табл. 4.2.
Номенклатура конкретных пылеуловителей, рекомендуемых для очистки аспирационного воздуха, приведена в табл. 4.3, пользуясь которой, по классификационной группе пыли по дисперсности (рис. 4.1) подбирается тип и вид пылеуловителя.
9. Рассчитываются потери давления в пылеуловителе. Они находятся, как составная часть скоростного давления, т. е.:
Рн = ζн·(ρг·V2/2),
где:
ζн - коэффициент местного сопротивления пылеуловителя;
ρг - плотность газового потока.
Для грубой оценки величины сопротивления (потерь давления) различных пылеуловителей можно воспользоваться данными, приведенными в табл. 4.3.
Детальный выбор типа пылеуловителя приводится в гл. 4 [1].
При определении потерь давления в циклоне ζн = ζц, величина ζц определяется по формуле:
ζц = k1k2ζo + Δζo
где:
k1 - коэффициент, зависящий от диаметра циклона (табл. 4.4);
k2 - коэффициент на запыленность воздуха (табл. 4.5);
ζo - коэффициент местного сопротивления циклона D=500 мм (табл. 4.6);
Δζo - коэффициент, зависящий от принятой компоновки группы циклонов (табл. 4.7); для одиночных циклонов Δζo = 0.
10. Рассчитываются основные размеры выбранного пылеуловителя. Они определяются в зависимости от производительности выбранного вентилятора - (Q, м3/ч) и оптимальных скоростей для данного вида пылеуловителя:
Так, для циклонов оптимальный диаметр определяется по формуле:
D = 0,94·(Q2 - ρг·ζц /Pц)1/2,
где:
ζ - коэффициент местного сопротивления циклона;
Рц - потери давления в циклоне;
ρг - плотность газового потока.
Можно диаметр циклона также найти из площади сечения циклона (F), которая определяется как:
F = Q/Vo, м3
где:
Vo - скорость движения воздуха (табл. 4.6), м/с.
Зная диаметр циклона D, определяются основные размеры пылеуловителя:
Dвых = D·0,59,
где:
Dвых - диаметр выхлопной трубы.
Размеры входного патрубка:
а х в = D·0,26 x D·1,11
Общая высота Н = D·4,26
11. Определяется коэффициент очистки воздуха от пыли:
h = ΔМ/М1 = М1 - М2/М1 = 1 - М2/М1,
где:
М1 и М2 - соответственно, количество пыли, поступающей и выходящей из пылеотделителя;
ΔМ - количество улавливаемой пыли.
Таблица 4.3
Тип |
Вид |
Класс пылеуловителя |
Область целесообразного применения |
|||||||
Классификационная группа аэрозолей по дисперсности |
Сопротивление, Па |
|||||||||
I |
II |
III |
IV |
V |
||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
||
Гравитационные |
Пылеосадочные камеры (произвольной конструкции) |
5 |
+ |
+ |
— |
— |
— |
100-200 |
||
Инерционные, циклоны |
Циклоны большой пропускной способности: |
|
|
|
|
|
|
|
||
одиночные циклоны ЦН-15, ЦН-24 |
5 |
+ |
+ |
— |
— |
— |
600-750 |
|||
групповые -циклоны ЦН-15 |
5 |
+ |
+ |
— |
— |
— |
600-750 |
|||
Циклоны высокой эффективности: |
|
|
|
|
|
|
|
|||
одиночные циклоны СКЦН-34 |
4 |
— |
+ |
+ |
— |
— |
1000-1200 |
|||
мокропленочные циклоны ЦВП |
4 |
— |
+ |
+ |
— |
— |
600-800 |
|||
Скрубберы |
ВТИ-ПСП скоростные промыватели СИОТ |
3 |
— |
+ |
+ |
— |
— |
900-1100 |
||
Струйные, мокрые: ПВМ |
3 |
— |
— |
+ |
+ |
— |
1200-1950 |
|||
ПВМК, ПВМС, ПВМБ |
2 |
— |
— |
+ |
+ |
— |
2000-3000 |
|||
капельные, типа Вентури КМП |
2 |
— |
— |
+ |
+ |
— |
3000-4000 |
|||
Тканевые |
Рукавные пылеуловители СМЦ-101, СМЦ-166Б, ФВК (ГЧ-1БФМ), ФРКИ |
2 |
— |
— |
+ |
+ |
— |
1200-1250 |
||
Сетчатые капроновые, металлические сетки для улавливания волокнистой пыли, Вентури, электрофильтры |
5 |
+ |
— |
— |
— |
— |
150-300 |
|||
Волокнистые |
Уловители туманов кислот и щелочей ФВГ-Т |
2 |
— |
— |
— |
+ |
— |
800-1000 |
||
Уловители аэрозолей масел (ротационные) |
2 |
— |
— |
— |
+ |
— |
800-1000 |
|||
Электрические |
Уловители туманов масел и маслянистых жидкостей УУП |
2 |
— |
— |
— |
+ |
+ |
50-100 |
Таблица 4.4