
Перспективные химические материалы и технологии
В химии (как, впрочем, и во всякой живой науке) постоянно рождаются новые идеи, совершаются крупные прорывы, формируются новые тенденции. Главные, ключевые события происходят в химическом синтезе; здесь совершаются каждодневные открытия - большие и малые, значимые и мало заметные. Атомная архитектура и природных, и синтетических молекул бесконечно разнообразна и эстетически совершенна. Созданы молекулы-ротаксаны (кольцо, двигающееся по стержню с ограничителями на концах), молекулы-катенаны (продетые кольца), фуллерены (молекулы - футбольные мячи), высокоспиновые ферромагнитные молекулы; синтезированы молекулы, функционирующие как молекулярные машины; синтезированы органические сверхпроводники и сверхпроводящие керамики, органические ферромагнетики, молекулы-лестницы, молекулы-тороиды и многопалубники, молекулярные контейнеры с включенными в них атомами и ионами. Созданы дендримерные молекулы, построенные по фрактальному типу - когда всё вещество составлено одной гигантской молекулой (по принципу алмаза).
Крупный прорыв - синтез углеродных нанотрубок диаметром 10 нм; созданы технологии манипулирования этими молекулярными трубками (их можно резать, укладывать, перемещать, изгибать, и т.д.); их можно нагружать металлом и получать проводящую молекулярную проволоку. Впервые открывается реальный путь к молекулярной наноэлектронике.
Синтезирован металлический водород; желанная цель оказалась не слишком экзотической - электропроводность его около 2000 сименсов, т.е. на уровне расплавленного цезия или рубидия. Нельзя также не отметить монументальные успехи трансгенной инженерии; на их острие стоит химия. Конечно, часть огромного творчества химиков останется невостребованной экзотикой, но в основном оно даёт новые точки роста и новые блага цивилизации.
Триумфальные успехи ковалентной химии демонстрируют и её мощь, и её концептуальный предел: в рамках ковалентной химии трудно (а часто и невозможно) создать молекулярно-организованные наносистемы, молекулярные устройства и ансамбли (типа каталитических антител и молекулярных машин), которыми пользуется Природа. Но уже сейчас открывается новая эра нековалентной химии, которая строится на нековалентных взаимодействиях (электростатические взаимодействия ионов и диполей, водородные связи, вандерваальсовы силы и т.д.). Комбинация принципов классической, ковалентной и новой, нековалентной химии открывает необозримый потенциал сотворения любой химической архитектуры любого масштаба.
Когерентная химия - новое лицо химии. Химическая когерентность - свойство химических систем генерировать осциллирующие, периодические режимы реакций. Классическая химическая когерентность обнаруживается в десятках новых электрохимических осциллирующих реакций, в окислении аммиака и оксида углерода на платине как катализаторе, в некоторых фотохимических реакциях, и т.д.
Энергично развивается химия в экстремальных и экзотических условиях: в сверхтекучем гелии; в кристаллических газовых решётках ультрахолодных атомов; в мощных ударных волнах при гигантских сжатиях; в сильных электрических полях лазеров с мощностью ~ 1016 Вт/см2 (в них напряжённость поля ~ 200 В/нм, сравнимая с напряжённостью внутренних электрических полей в молекулах); в сильных микроволновых и магнитных полях; в сильных гравитационных полях. Цель этих исследований - поиск новых реакций, новых процессов и новых режимов с возможными выходами в высокие технологии.
Модификация активных веществ. В настоящее время созданы уже такие модифицированные антибиотики, противораковые препараты и т.д., где атом водорода замещен на атом фтора. «Модифицирование» означает следующее - когда антибиотик содержит в своей структуре вместо водорода фтор, то ферменты биосистемы «не знают», что с ним делать, и антибиотик работает по-другому. Мы можем в известной мере предсказать, как он будет работать. Поэтому органическая химия развивается в направлении модификации активных веществ и создания специфических реагентов для такой модификации, как, например, новые фторирующие реагенты.
QSAR. Другое направление возникло на стыке органической химии, хемометрики, математического моделирования и компьютерной химии - QSAR (Quantitative Structure-Activity Relationship; дословный перевод - количественное соотношение структура-свойство). В настоящее время QSAR - это некое компьютерное правило, описывающее любое свойство (свойства молекулярные, свойства биологические) через дескрипторы.Что такое дескриптор химической структуры? Это число или набор чисел, которые характеризуют структуру органического соединения, причем характеризуют так, что они "схватывают" существенные черты этой структуры. Вообще говоря, любое число, которое можно рассчитать исходя из структурной формулы (молекулярный вес, число определенных атомов, связей или групп, молекулярный объем, частичные заряды на атомах и т.д.), может выступать в качестве дескриптора. Методология QSAR позволяет химику довольно удачно достичь конечную цель исследований: предсказать (и затем синтезировать!) структуру с нужной целевой активностью.
Фуллерены и нанотрубки.
В настоящее время показано, что элементарный углерод способен образовывать сложные вогнутые поверхности, состоящие из пяти, шести, семи и восьмиугольников. Начиная с 80-х годов были открыты бесчисленные формы элементарного углерода - фуллерены и нанотрубки, гигантские фуллерены и луковичные структуры, тороидальные и спиральные формы углерода. Создание в 1990 году Кречмером и Хафлером эффективной технологии, синтеза, выделения и очистки фуллеренов в конечном итоге привело к открытию многих новых необычных свойств фуллеренов.
Так, были получены пленки полифуллерита, пленки, обладающие пластическими свойствами, являющиеся новым типом полимерных материалов.
Фуллерены являются в настоящее время самым наилучшим депо для молекулярного водорода, что открывает большую перспективу их использования как высокоэффективного энергоносителя будущего.
Одно из важных направлений в современной неорганической химии - изучение кластеров. Это класс химических соединений, в составе которых имеется разное число атомов переходных металлов
Кластерная химия открывает новую стратегию и в гетерогенном катализе, особенно в комбинации с туннельной сканирующей микроскопией. Игла микроскопа способна «капать» любые атомы, в любом числе на любые грани, ребра, террасы любого кристалла, создавая разнообразные каталитические микрореакторы и позволяя тестировать на них любые реакции.
Получен самый большой неорганический кластер, строение которого определено методом рентгеноструктурного анализа. Он содержит 248(!) атомов молибдена, связанных через мостиковые атомы кислорода. Структура кластера похожа на автомобильную покрышку.
Одно из интереснейших и перспективных направлений в науке о полимерах и материаловедении последних лет — разработка принципов получения полимерных нанокомпозитов. По определению, композиционными называют материалы, состоящие из двух или более фаз с четкой межфазной границей. На практике же это — системы, которые содержат усиливающие элементы (волокна, пластины) с различным отношением длины к сечению (что и создает усиливающий эффект), погруженные в полимерную матрицу. Удельные механические характеристики композитов заметно выше, чем у исходных компонентов. Именно благодаря усиливающему эффекту композиты отличаются от наполненных полимерных систем, в которых роль наполнителя сводится к удешевлению цены конечного продукта, но при этом заметно снижаются механические свойства материала.
Дендримеры.
До последнего времени объектами производства и исследований являлись почти исключительно цепные полимеры: линейные, разветвленные, сшитые, у которых длина цепи или линейного отрезка цепи существенно превосходит диаметр. В последние годы были синтезированы полимеры принципиально иного строения, которое напоминает строение кораллов или дерева. Такие полимеры называются сверхразветвленными или каскадными. Те из них, в которых ветвление имеет регулярный характер, называются дендримерами (от греч. dendron - дерево). Получают дендримеры методом контролируемого многоступенчатого синтеза.
Дендримеры часто называют полимерами нового поколения, им предсказывают большое будущее как материалам специального назначения. Перечислим лишь те области, где дендримеры уже используются или определилась реальная перспектива их использования.
Предсказуемые, контролируемые и воспроизводимые с большой точностью размеры макромолекул дендримеров делают их идеальными стандартами в масс-спектрометрии, электронной и атомной спектроскопии, ультрафильтрации. Наличие каналов и пор в макромолекулах дендримеров позволяет использовать их для капсулирования и иммобилизации гостевых низкомолекулярных молекул, в том числе и физиологически активных. Такие композиции, построенные по типу гость-хозяин, перспективны для применения в биологии, медицине, фармакологии, косметике. Высокая степень функциональности создает поистине неограниченные возможности для дальнейших превращений макромолекул дендримеров, которые могут привести к конструированию новых наноразмерных структур, модификации поверхности макромолекул с целью придания им ярко выраженных лиофобных или лиофильных свойств, к созданию нового типа нанесенных катализаторов.