
- •Предисловие
- •1. Основные сведения об импульсных процессах
- •1.1. Импульсные режимы работы
- •1.2. Форма и параметры импульсов
- •1.3. Основные принципы генерирования мощных импульсов тока
- •1.4. Принципы построения зарядных устройств емкостных накопителей
- •2. Генераторы прямоугольных импульсов тока на основе реактивных формирующих двухполюсников
- •2.1. Переходные характеристики формирующих двухполюсников
- •2.2. Канонические схемы формирующих двухполюсников
- •2.3. Формирующие двухполюсники 1-го рода
- •2.4. Формирующие двухполюсники 2-го рода
- •2.5. Длинная линия в качестве формирующего двухполюсника
- •3. Генераторы импульсов тока на основе длинных линий
- •3.1. Волновые процессы в длинной линии
- •3.2. Согласование длинной линии и нагрузки
- •3.3. Однородная искусственная линия
- •3.4. Двойная длинная линия
- •3.5. Короткозамкнутая длинная линия, заряжаемая током
- •3.6. Коррекция формы импульсов
- •3.7. Работа однородной искусственной линии на комплексную нагрузку
- •3.8. Работа однородной искусственной линии на нелинейную нагрузку
- •3.9. Особенности расчета и проектирования генераторов на основе реактивных формирующих двухполюсников
- •4. Генераторы прямоугольных импульсов тока регулируемой длительности
- •4.1. Принципы построения генераторов импульсов регулируемой длительности
- •4.2. Частичный разряд емкостных накопителей
- •4.3. Частичный разряд эквивалентных формирующих двухполюсников
- •4.4. Энергетика процессов частичного разряда однородной искусственной линии
- •4.5. Длинная линия с распределенным диодом
- •4.6. Однородная искусственная линия с вентилями
- •4.7. Генераторы с дискретной регулировкой длительности импульсов
- •4.8. Особенности расчета и проектирования генераторов на основе однородных искусственных линий с вентилями
- •5. Генераторы импульсов тока регулируемой формы
- •5.1. Длинная линия с распределенным ключом
- •5.2. Теорема о соответствии формы эпюра зарядного напряжения длинной линии и формы импульса тока нагрузки
- •5.3. Длинная линия при одновременной коммутации распределенного ключа
- •5.4. Генераторы импульсов тока регулируемой формы на основе однородных искусственных линий
- •5.5. Генераторы импульсов тока регулируемой формы на основе расщепленных емкостных накопителей
- •5.6. Практическая реализация генераторов импульсов тока регулируемой формы
- •6. Зарядные устройства емкостных накопителей
- •6.1. Резистивный заряд емкостных накопителей
- •6.2. Индуктивный заряд емкостных накопителей
- •6.3. Управляемый резонансно-диодный заряд емкостных накопителей
- •6.4. Заряд емкостных накопителей от неуправляемых выпрямителей
- •6.5. Заряд емкостных накопителей от источников тока
- •6.6. Заряд расщепленных емкостных накопителей с помощью коммутатора зарядного тока
- •6.7. Энергетика процессов резистивного заряда расщепленных емкостных накопителей
- •6.8. Резонансно-диодный заряд расщепленных емкостных накопителей
- •Заключение
- •Список литературы
- •Оглавление
4.4. Энергетика процессов частичного разряда однородной искусственной линии
Доказанная в 4.3 теорема позволяет произвести количественную оценку энергетики процессов частичного разряда эквивалентных ФД на примере ОИЛ, которая при бесконечном числе звеньев является ЛРП. Рассмотрим два режима работы – на согласованную и на рассогласованную нагрузки.
При работе на согласованную нагрузку за время к в нагрузке выделится энергия Wн = W0*, где * = к/max; 0 к max. Начальная энергия ЛРП W0 = 0,5q0U0.
Оставшаяся по завершении переходного процесса в линии энергия
Wост = 0,5qостUост. (4.12)
Значение остаточного заряда
qост = q0(1 – *).
Отсюда Uост = qост/C0 = q0(1 – *)/C0 = U0(1 – *). Тогда из (4.12) получим:
Wост = 0,5q0U0(1 – *)2.
Энергия потерь, рассеянная в линии в результате колебательного процесса при t > к,
Wпот = W0 – Wн – Wост = 0,5q0U0(1 – *).*
П
Рис.
4.8
Покажем, что рассогласование линии с
нагрузкой в сторону уменьшения
волнового сопротивления линии
позволяет повысить КПД генератора
практически до любого заданного уровня.
Действительно, для формирования в одной и той же нагрузке R импульса тока с амплитудой I и максимальной длительностью max параметры рассогласованной ЛРП должны удовлетворять следующим условиям:
С2 = max/2 = max/2R = C1; L2 = L1/; U02 = I(R + ) = U0( + 1)/2,
где C1, L1, U0 – емкость, индуктивность и напряжение заряда согласованной линии.
В нагрузке выделится энергия
Wн = I2Rmax*.
Начальное значение энергии рассогласованной линии
W02 = C2U202/2 = W0( + 1)2/4 = I2Rmax( + 1)2/4.
Остаточная энергия в рассогласованной линии Wост2 определяется уровнем остаточного напряжения Uост2, которое найдем, используя закон сохранения заряда:
Uост2 = qост2/C2 = (q02 – qн2)/C2 = IR( + 1 – 2*)/,
где q02 = C2U02 = C2IR( + 1)/, qн2 = Imax* = 2IRC2*/.
Остаточная энергия
Wост2 = С2 U2ост2/2 = I2Rmax( + 1 – 2*)2/4.
Отсюда КПД генератора на основе ЛРП, работающей в рассогласованном режиме,
2 = Wн2/(W02 – Wост2) = /( + 1 – *).
На рис. 4.9 приведены зависимости = f(*) для различных значений коэффициента согласования , а на рис. 4.10 – зависимости КПД, напряжения заряда линии и энергии от .
Анализ этих зависимостей позволяет сделать основной вывод о том, что рассогласование дает возможность существенно повысить КПД процесса частичного разряда и снизить значение зарядного напряжения линии при незначительном увеличении начальной энергии линии. Все изложенное справедливо и для ОИЛ с конечным числом элементов. При этом характер всех зависимостей сохраняется, а абсолютное значение отклонений всех величин не превышает 10 % уже при n = 4, уменьшаясь с ростом числа ячеек. Тем не менее несмотря на приемлемую энергетику частичного разряда рассогласованной линии практическая реализация таких генераторов существенно ограничивается из-за длительного переходного процесса в линии после отключения тока нагрузки, определяемого высокой добротностью реактивных элементов. Это резко снижает предельные значения рабочих частот данных генераторов, что в большинстве случаев неприемлемо. Выходом из указанной ситуации является техническое решение, описываемое далее.