
- •Кафедра – Информационно- Коммуникационные Технологии
- •Лекция 1. Введение в дисциплину – эвм и периферийные устройства
- •1.1 История развития вычислительной техники
- •1.2 Основные принципы построения эвм
- •Поколения эвм
- •Классификация эвм
- •Вопросы
- •Лекция 2. Компьютер – общие сведения
- •2.1 Основные узлы пк – «Материнская плата»
- •2.2 Основные компоненты компьютера:
- •2.3 Интерфейсные шины
- •2.4 Основные периферийные устройства компьютера
- •Вопросы и задания
- •Лекция 3. Представление данных в эвм.
- •3.1 Форматы файлов
- •3.2 Кодирование чисел
- •3.3 Кодирование текста
- •3.4 Кодирование графической информации
- •3.5 Кодирование звука
- •3.6 Типы данных
- •Лекция 4. Структурная организация эвм - процессор Введение
- •Что известно всем
- •4.1 Микропроцессорная система
- •4.2 Что такое микропроцессор?
- •4.3 Основной алгоритм работы процессора
- •Алу Запросы на пре-ия и пдп
- •4.4 Программный код и система команд
- •4.5 Микроархитектура процессора
- •512 Кбайт
- •Лекция 5. Микропрограммное устройство управления
- •5.1 Устройство управления
- •5.2 Микропроцессорная память
- •5.3 Структура адресной памяти процессора
- •5.4 Интерфейсная часть мп
- •5.5 Назначение и функции чипсета в микропроцессорной системе
- •Лекция 6. Организация памяти
- •6.1 Организация подсистемы памяти в пк
- •6.2 Оперативная память
- •6.4 Технологии оперативной памяти
- •Вопросы для самоконтроля
- •Лекция 7. Внешняя память компьютера Введение
- •Жесткий диск (Hard Disk Drive)
- •Общее устройство нжмд
- •Пластины (диски)
- •Головка записи-чтения
- •Позиционер
- •Контроллер
- •Производительность
- •Структура хранения информации на жестком диске
- •Кластер
- •Магнитооптические диски
- •Лазерные компакт-диски cd - rom
- •Дисковые массивы и уровни raid
- •Raid 0: Базовая конфигурация.
- •Raid1: Зеркальные диски.
- •Raid 2: матрица с поразрядным расслоением
- •Raid 3: аппаратное обнаружение ошибок и четность
- •Raid 4: внутригрупповой параллелизм
- •Raid 5: четность вращения для распараллеливания записей
- •Raid 6: Двумерная четность для обеспечения большей надежности
- •Флэш-память
- •Вопросы и задания
- •Лекция 8. Логическая организация памяти
- •Виртуальная память
- •Основная память
- •Дисковая память
- •Страничная организация памяти
- •Преобразование адресов
- •Сегментная организация памяти.
- •Свопинг
- •Вопросы и задания
- •Лекция 9. Методы адресации
- •Лекция 10. Архитектура risc-процессоров
- •10.1 Основные черты risc-процессоров
- •10.2 Risc-процессоры 3-го поколения
- •Структура процессоров Alpha: 21064, 21264
- •10.3Пиковая производительность risc-процессоров
- •10.4 Области применения risc-процессоров
- •Вопросы для самоконтроля
- •Лекция 11. Высокопроизводительные вс
- •11.1 Параллельная обработка данных на эвм
- •Закон Амдала
- •11.2 История появления параллелизма в архитектуре эвм
- •11.3 Классы параллельных систем
- •11.4 Технологии параллельного программирования
- •11.5 Оценки производительности супер-эвм
- •Вопросы для самоконтроля
- •Лекция 12. Особенности архитектуры современных высокопроизводительных вс Введение
- •Параллельные системы
- •Классификация архитектур по параллельной обработке данных
- •Вычислительные Системы
- •Параллелизм на уровне команд – однопроцессорные архитектуры
- •Конвейерная обработка
- •Суперскалярные архитектуры
- •Мультипроцессорные системы на кристалле
- •Технология Hyper-Threading
- •Многоядерность — следующий этап развития
- •Вопросы и задания
- •Лекция 13. Организация обмена в вычислительной системе
- •13.1 Система прерываний и исключений в архитектуре ia-32
- •13.2 Расширенный программируемый контроллер прерываний (apic)
- •13. 3 Обработка прерываний на основе контроллера 8259a
- •13.4 Подсистема прямого доступа к памяти
- •Вопросы для самоконтроля
- •Лекция 14. Интерфейсы вычислительных систем
- •14.1 Типы и характеристики интерфейсов
- •14.2 Архитектура системных интерфейсов
- •14.3 Системные интерфейсы для пк
- •14.5 Интерфейс pci
- •14.6 Порт agp
- •14.8 Интерфейсы накопителей
- •Вопросы для самоконтроля
- •Лекция 15. Интерфейсы периферийных устройств
- •15.1 Интерфейсы scsi
- •15.2 Интерфейс rs-232c
- •15.3 Интерфейс ieee 1284
- •15.4 Инфракрасный интерфейс
- •15.5 Интерфейс usb
- •15.6 Интерфейс ieee 1394 - FireWire
- •Вопросы для самоконтроля
- •Лекция 16. Состав, классификация и характеристики периферийных устройств
- •16.1 Классификация периферийных устройств
- •16.2 Видеосистема
- •16.3 Видеоадаптеры
- •16.5 Аудиосистема
- •Контрольные вопросы
- •Список основной литературы
- •Список дополнительной литературы
- •Приложение Классификация и основные определения пу.
- •Общая характеристика клавиатуры.
- •Интерфейс клавиатуры и мыши.
- •Скан-коды и системная поддержка.
- •Манипуляторы-указатели
- •Общая характеристика методов вывода изображений.
- •Графический режим.
- •Текстовый режим.
- •Трехмерная графика и способы обработки видеоизображений.
- •Принципы передачи цветных телевизионных изображений.
- •Объединение компьютерной графики и телевизионного изображения.
- •Стандарты кодеков изображений mpeg.
- •Основные технические характеристики.
- •Управление монитором.
- •Плоские дисплеи.
- •Интерфейсы дисплеев.
- •Функциональная схема адаптеров дисплеев
- •Графический процессор адаптера, принцип работы тракта записи.
- •Принцип считывания со сравниванием цветов в графическом адаптере.
- •Параметры видеосистемы.
- •Принципы построения различных типов принтеров.
- •Форматы данных и интерфейсы принтеров
- •Системная поддержка принтеров.
- •Принципы хранения информации.
- •Хранение информации на магнитных дисках.
- •Накопители на гибких магнитных дисках (нгмд).
- •Интерфейс и контроллер нгмд.
- •Конструкция накопителя на жестких магнитных дисках (нжмд).
- •Основные характеристики винчестеров.
- •Особенности функционирования винчестеров
- •Магнитооптические диски.
- •Флэш-память.
- •Основы цифровой обработки сигналов.
- •Звуковая карта пк.
- •Интерфейсы звуковых карт.
- •Проводные интерфейсы связи.
- •40. Беспроводные интерфейсы связи. Инфракрасный интерфейс.
- •Беспроводные интерфейсы связи. Радиоинтерфейс Bluetooth.
- •Модемы. Структурная схема устройства.
- •Основные принципы шинной связи, управление шиной.
- •Арбитраж шин.
- •Передача информации шинами по блочно.
- •Шины расширения.
- •Параллельные шины.
- •Последовательные шины
Вопросы и задания
Что такое кластер? Перечислите методы борьбы с кластеризацией.
Дайте развернутую характеристику FAT 32.
В чем состоит различие между физическим и логическим форматированием?
Как и в каких случаях выполняется дефрагментация ЖД?
В чем заключается смысл и предназначение RAID-массивов?
Лекция 8. Логическая организация памяти
Основная (или как ее принято называть оперативная) память всегда была и остается до сих пор наиболее критическим ресурсом компьютеров. Организация управления этим ресурсом – задача для операционной системы. Поэтому всегда первичной функцией всех операционных систем (более точно, операционных систем, обеспечивающих режим мультипрограммирования) было обеспечение разделения основной памяти между конкурирующими пользовательскими процессами. В оперативной памяти мультипрограммных ЭВМ обычно постоянно хранится ядро ОС. Программы ядра ОС в процессе работы ЭВМ выполняются часто, время их выполнения невелико. Остальные части операционной системы, как правило, находятся во внешней памяти, и в случае необходимости требуемые модули загружаются в оперативную память, занимая ее часть. В оставшейся части ОП хранится несколько программ, выполняемых в мультипрограммном режиме, и используемые ими данные. Распределение памяти предполагает удовлетворение потребностей, как пользователей, так и системных средств. Эти требования в большей части противоречивы. Существуют три стратегии распределения оперативной памяти, как и любого ресурса: статическое, динамическое распределение и свопинг.
При статическом распределении вся необходимая оперативная память выделяется процессу в момент его порождения. При этом память выделяется единым блоком необходимой длины, начало которого определяется базовым адресом. Программа пишется в адресах относительно начала блока, а физический адрес команды или операнда при выполнении программы формируется как сумма базового адреса блока и относительного адреса в блоке. Значение базового адреса устанавливается при загрузке программы в оперативную память. Пусть ОП имеет объем 10 Мбайт, а для выполнения программ A, B, C, D требуются следующие объемы памяти: A - 2 Мбайт, B - 1 Мбайт, C - 4 Мбайт, D - 4 Мбайт. Начальное распределение памяти и распределение памяти после выполнения некоторых программ представлено на рис 8.1.
Рис. 8.1 Статическое распределение памяти: a - начальное распределение; б - после завершения программы A; в - после завершения программы B; г - после завершения программы C
Из рисунка видно, что программа D при статическом распределении памяти может быть загружена в оперативную память лишь после завершения выполнения всех предыдущих программ, хотя необходимый для нее объем памяти существовал уже после завершения работы программы A. В то же время для улучшения показателей работы мультипрограммной ЭВМ требуется, чтобы в оперативной памяти постоянно находилось, возможно, большее количество программ, готовых к выполнению. При свопинге (swapping) ОС по-прежнему располагает текущий процесс целиком в ОП, но при необходимости может целиком его (или образ) выбросить и заместить образом другого процесса. При динамическом распределении памяти каждой программе в начальный момент выделяется лишь часть от всей необходимой ей памяти, а остальная часть выделяется по мере возникновения реальной потребности в ней. Системные средства должны отслеживать возникновение требований на обращение к тем частям программы, которые в данный момент отсутствуют в ОЗУ, выделять этой программе необходимый блок памяти и помещать туда из внешнего ЗУ требуемую часть программы. Для этого может потребоваться предварительное перемещение некоторых блоков информации из ОЗУ во внешнюю память. Данные перемещения должны быть скрыты от пользователя и в наименьшей степени замедлять работу его программы. Динамическое распределение памяти тесно переплетается с понятием виртуальной памяти.
Принцип виртуальной памяти предполагает, что пользователь при подготовке своей программы имеет дело не с физической ОП, действительно работающей в составе компьютера и имеющей некоторую фиксированную емкость, а с виртуальной (кажущейся) одноуровневой памятью, емкость которой равна всему адресному пространству, определяемому размером адресной шины компьютера. Таким образом, виртуальная память – это эффективное использование ресурсов ОП и ВП, которые выделяются прикладным программам операционной системой.