Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции 4-5 (ФНП).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.38 Mб
Скачать

4. Площадь поверхности

Пусть в пространстве задана некоторая гладкая поверхность и пусть Произведем разбиение

области на частичные подобласти Это разбиение индуцирует разбиение поверхности на частичные поверхности Возьмем произвольно точку и в соответствующей точке построим плоскость касательную к поверхности Цилиндр с основанием и образующей, параллельной оси вырежит из этой плоскости кусок Обозначим через площадь куска а через диаметр разбиения

Определение 4. Если существует конечный предел и он не зависит от вида разбиения и выбора точек , то его называют площадью поверхности

Теорема 3. Пусть поверхность задаётся уравнением причем функция и её частные производные непрерывны в замкнутой ограниченной области Тогда площадь поверхности вычисляется по формуле

Доказательство. Вычислим площадь куска Так как то где площадь области а угол между плоскостями и Угол очевидно, равен углу между нормалями и плоскостей и соответсвенно. Так как то

Следовательно, По определению 4 имеем

Теорема доказана.

Пример 3. Вычислить площадь части поверхности параболоида вырезан-

ную цилиндром

Решение. Здесь область есть круг Площадь искомой поверхнос-

ти находим по формуле (8):

24

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]