
- •080801.65 «Прикладная информатика (по областям)»
- •Общая характеристика процессов сбора, передачи, обработки и накопления информации.
- •Технические и программные средства реализации информационных процессов.
- •Программное обеспечение и технологии программирования.
- •Методы защиты информации.
- •Общая классификация видов информационных технологий и их реализация в технических областях
- •6. Понятие информационной системы.
- •7.Системный анализ предметной области
- •8. Основные понятия информационных сетей. Сетевые программные и технические средства информационных сетей.
- •9. Основные понятия теории моделирования.
- •10. Имитационные модели информационных процессов.
- •11. Языки моделирования. Имитационное моделирование информационных систем и сетей.
- •12. Архитектурные особенности организации эвм различных классов.
- •13. Вычислительные системы и сети
- •14.Вычислительный процесс и его реализация с помощью ос. Основные функции ос.
- •Основные функции ос
- •16. Защита информации при реализации информационных процессов
- •17. Сетевые операционные среды и платформы
- •Программные средства для разработки web-страниц и web-сайтов.
- •Универсальные средства разработки web-сайтов.
- •21. Понятие системы. Классификация систем.
- •Разработка web-приложений с помощью php.
- •23. Использование современных систем управления контентом сайта (cms).
- •Друпал (Drupal)
- •Методы широкополосного скоростного доступа в Internet.
- •Организация, структура и функции web-сервера.
- •3. Технология web
- •Технология web-сервисов. Интеграция портлетов в порталы.
- •Основные принципы построения web-приложений. Основные требования, предъявляемые к web-приложениям.
- •Язык разметки html. Структура документа html. Динамический html.
- •Современные технологии разработки web-приложений. Принципы использования субд в web-приложениях.
11. Языки моделирования. Имитационное моделирование информационных систем и сетей.
Чтобы реализовать на ЭВМ модель сложной системы, нужен аппарат моделирования, который в принципе должен быть специализированным.
UML (Unified Modeling Language — унифицированный язык моделирования) — язык графического описания для объектного моделирования в области разработки программного обеспечения. UML является языком широкого профиля, это — открытый стандарт, использующий графические обозначения для создания абстрактной модели системы, называемой UML-моделью.
Вместе с тем, существующие языки программирования общего назначения для достаточно широкого круга задач позволяют без значительных затрат ресурсов создавать весьма совершенные имитационные модели. Можно сказать, что они способны составить конкуренцию специализированным языкам моделирования.
Классические языки моделирования являются процедурно-ориентированными и обладают рядом специфических черт. Можно сказать, что основные языки моделирования разработаны как средство программного обеспечения имитационного подхода к изучению сложных систем.
Языки моделирования позволяют описывать моделируемые системы в терминах, разработанных на базе основных понятий имитации. С их помощью можно организовать процесс общения заказчика и разработчика модели. Различают языки моделирования непрерывных и дискретных процессов.
В настоящее время сложилась ситуация, когда не следует противопоставлять языки общего назначения (ЯОН) и языки имитационного моделирования (ЯИМ).
Некоторые ЯИМ базируются на конструкциях ЯОН: например, FORSIM — на языке FORTRAN, ПЛИС — на языке PL и т.д.
Наиболее известным и эффективным ЯОА сегодня является язык VHDL.
Разработан ряд моделирующих языков высокого уровня для моделирования дискретных систем, систем массового обслуживания. Таких, как SIMULA, SIMSCRIPT, GPSS, CSL и др.
GASP является расширением языка ФОРТРАН.
МИКС (моделирование имитационное комбинированных систем) представляет собой удобное средство моделирования.
В силу своего целевого назначения при правильном выборе и использовании языки моделирования обладают рядом понятных достоинств.
Вместе с тем, им присущи и определенные недостатки, главными из которых являются сугубо индивидуальный характер соответствующих трансляторов, затрудняющий их реализацию на различных ЭВМ, низкая эффективность рабочих программ, сложность процесса отладки программ, нехватка документации (литературы) для пользователей и специалистов-консультантов и др. В ряде случаев эти недостатки способны перечеркнуть любые достоинства.
Процесс моделирования включает в себя формирование модели, отладку моделирующей программы и проверку корректности выбранной модели.
Чаще всего имитационная модель строится не с нуля. Существуют готовые имитационные модели основных элементов сетей: наиболее распространенных типов маршрутизаторов, каналов связи, методов доступа, протоколов и т.п.
В любом случае имитационное моделирование требует знания статистических свойств системы в целом и составляющих ее элементов. Качество результатов моделирования в значительной степени зависит от точности исходных данных о сети, переданных в систему имитационного моделирования, и еще больше – от обоснованности априорных предположений, сделанных при моделировании.
Диаграммы использования Эти диаграммы описывают функциональность ИС, которая будет видна пользователям системы. "Каждая функциональность" изображается в виде "прецедентов использования" (use case) или просто прецедентов. Прецедент - это типичное взаимодействия пользователя с системой, которое при этом:
описывает видимую пользователем функцию,
может представлять различные уровни детализации,
обеспечивает достижение конкретной цели, важной для пользователя.
Прецедент рисуется как овал, связанный с типичными пользователями, называемыми "актерами" (actors). Актеры используют систему (или используются системой) в данном прецеденте. Актер, представляющий человека-пользователя, характеризуется ролью в данном прецеденте. На диаграмме изображается только один актер, однако, реальных пользователей, выступающих в данной роли по отношению к ИС, может быть много. Список всех прецедентов фактически определяет функциональные требования к ИС, с помощью которых может быть сформулировано техническое задание.
Диаграммы классов (class diagrams) описывают статическую структуру классов. Эти диаграммы могут описывать "словарь предметной области" на концептуальном уровне. С другой стороны, на детальном уровне (уровне спецификаций и уровне реализаций) диаграммы определяют структуру программных классов. Они используются для генерации каркасного программного кода на заданном языке программирования, а также для генерации SQL DDL предложений, определяющих логическую структуру реляционных таблиц БД.
Для описания динамики используются диаграммы поведения (behavior diagrams), которые подразделяются на
диаграммы состояний·(statechart diagrams),
диаграммы активностей (activity diagrams) и
диаграммы взаимодействия·(interaction diagrams), состоящие из
диаграмм последовательности· (sequence diagrams)
диаграмм взаимодействий· (collaboration diagrams)
И, наконец, диаграммы реализации (implementation diagrams) состоят из компонентных диаграмм· (component diagrams) и диаграмм развертывания· (deployment diagrams).