Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GAZOV_E_IONIZATsIONN_E_DETEKTOR.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
738.82 Кб
Скачать

Форма импульса в пропорциональном счетчике

Пусть в цилиндрическом пропорциональном счетчике на расстоянии rо от его центра в результате первичной ионизации создано по пар ионов. Пока в счетчике не наступает газовое усиление, т.е. пока электроны дрейфуют в области низких значений напряженности поля, импульс можно описать соотношением, полученным для цилиндрической камеры. Максимальное значение импульса за счет движения электронов и ионов первичной ионизации будет в М раз меньше, чем результирующий импульс, и, следовательно, этой составляющей импульса можно пренебречь при достаточно больших величинах газового усиления. Лавина электронов начнет развиваться тогда, когда электроны достигнут области r < rk (kрасстояние от анода, где поле достаточно для вторичной ионизации). Время движения электронов до области газового усиления зависит от места первичной ионизации и составляет примерно (rоrh)/(w).

Время развития лавины, т.е. время, в течение которого происходит вторичная ионизация, мало. Действительно, газовое усиление осуществляется на расстояниях от центрального электрода, равного нескольким диаметрам нити (~0,1 см). Скорость дрейфа электронов в этой области около 107 см/с, т.е. время развития лавины примерно 10-8 с. Таким образом, если пренебречь зарядами первичной ионизации, то можно считать, что на расстоянии от центрального электрода около 1…2 диаметров создано M·по пар ионов. Оценим отношение максимальных значений амплитуд и . Если r2/r1 = 100, a rк/r1 ~ 2, то / ≈ 0,15. Таким, образом, мы приходим к интересному выводу: импульс в пропорциональном счетчике обусловлен главным образом движением положительных ионов. Следовательно, в тех случаях, когда производят анализ энергетического состава частиц по амплитудам, необходимо выбирать величины RC больше времени движения положительных ионов от анода к катоду. В силу логарифмической зависимости F(t) в счетчиках можно использовать существенно меньшие величины RC, чем время движения ионов до катода. За время примерно 10-6 с амплитуда вырастает до половины своего максимального значения. На рис. 7 показана форма импульса в пропорциональном счетчике для нескольких значений RC.

Временные характеристики счетчика. Пусть импульс достигает своего максимального значения (или какого-то уровня) за время от момента попадания частицы в счетчик. Длительность этого интервала будет в основном определяться временем движения электронов первичной ионизации от места их образования до анода счетчика и, следовательно, максимальный разброс в величинах будет порядка (r2rl)/(w -).

Рис. 7. Форма импульса в пропорциональном счетчике. Время движения ионов от анода к катоду 100 мкс

Флуктуации величины будут зависеть от размеров счетчика, от отношения r2/r1 и напряжения на счетчике. Разброс в значениях величин (в зависимости от места первичной ионизации), который может достигать нескольких долей микросекунды и даже микросекунды в больших счетчиках, определяет временное разрешение пропорциональных счетчиков при измерении распределения частиц во времени. Очевидно, что разрешающее время схем совпадений τс должно быть больше или порядка неопределенности в .

Если счетчик используется для измерения скорости счета, то представляет интерес время нарастания импульса до определенного значения не от момента попадания частицы в счетчик, а от момента, когда электроны первичной ионизации достигают анода. В этом случае имеет смысл выбирать величины RC малыми, но такими, чтобы амплитуда импульса была еще достаточно большой (чтобы не свести на нет газовое усиление). Когда можно допустить, чтобы амплитуда была в т раз меньше Vmax то величины RC можно выбирать из следующего соотношения:

где tmax – время нарастания амплитуды до Vmax/m в случае бесконечно большого RC.