Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
GAZOV_E_IONIZATsIONN_E_DETEKTOR.doc
Скачиваний:
1
Добавлен:
01.05.2025
Размер:
738.82 Кб
Скачать

Образование электроотрицательных ионов

Взаимодействие электронов с нейтральными атомами и молекулами может при­водить к образованию электроотрицательных ионов. Электроотрицательный ион стабилен, если его энергия в основном состоянии меньше, чем энергия основного состояния соответствующего нейтрального атома. Другими словами, энергия связи добавочного электрона должна быть положительной. Возможность существования электроотрицательного нона можно понять, рассматривая его как систему с рядом энергетических дискретных состояний, Энергии связи добавочного электрона определяется эффективным кулоновским полем ядра и электронов оболочки, которое убывает с расстоянием значительно быстрее, чем кулоновское поле точечного заряда. Добавочный электрон по принципу Паули может занимать лишь вакантные энергетические состояния. Поэтому образование электроотрицательного нона у атомов с заполненной оболочкой маловероятно, так как присоединенный электрон должен находиться в состоянии с главным квантовым числом, на единицу большим, чем у внешних электронов. А это значит, что добавочный электрон будет находиться «далеко» от внешней заполненной электронной оболочки, т.е. в области, где поле ядра будет надежно экранировано электронной оболочкой атома.

Атомы с незаполненными внешними оболочками могут образовать электроотрицательный ион, поскольку в этом случае дополнительный электрон может занять вакантное место «близко» от ядра и внешние электроны не будут полностью экранировать поле ядра. Приведенные качественные соображения находятся в согласии с наблюдениями. В газах отрицательных ионов Аг, Ne, He, а также азота не наблюдали.

Вероятность образования электроотрицательных ионов различна для разных ионов и зависит от скорости движения электронов. вероятность образования отрицательного иона при столкновении электрона с атомом или молекулой характеризуют коэффициентом прилипания h, который определяется отношением сечения образования отрицательного иона к полному сечению взаимодействия электрона с атомом. Для того чтобы рассчитать число образованных отрицательных ионов, достаточно знать среднее число столкновений электронов с атомами ν и величину h. Тогда вероятность избежать захвата электрона при одном соударении равна (1- h), а при ν соударениях – (1- h)v. Следовательно, вероятность образования отрицательного иона при соударениях равна [1- (1- h)v].

Среднее число соударений электронов с атомами в единицу времени можно оценить, взяв отношение средней скорости теплового движения электронов υ к средней длине свободного пробега при единичном давлении λо, тогда при любом давлении р среднее число соударений будет равно υр/λо.

Электроотрицательные ионы могут образовываться не только при столкновениях электронов с атомами, но и при столкновении нейтрального атома с поверхностью металла. Этот процесс может иметь большую вероятность, если энергия связи добавочного электрона в атоме (отрицательном ионе) больше работы выхода электронов из металла. В ионизационных камерах и счетчиках процесс образования отрицательных ионов на катоде (отрицательном электроде) возможен в два этапа: положительный ион вблизи катода нейтрализуется и образует нейтральный атом в возбужденном состоянии, а затем возбужденный атом захватывает второй электрон. Последний процесс энергетически возможен, если сумма энергии возбуждения и энергии связи электрона в отрицательном ионе больше работы выхода электронов из металла.

Без внешнего электрического поля, образовавшиеся в результате ионизации, электроны и ионы будут диффундировать и время их жизни (в бесконечном объеме) будет определяться рекомбинацией. Картина существенно изменяется, если объем, в котором происходит ионизация, поместить во внешнее электрическое поле. При достаточно большой напряженности поля заряды будут двигаться в направлении электродов. Это движение зарядов создает ток в камере и во внешней измерительной цепи. Величина плотности тока

J = J+ + J-,

где J+ и Jкомпоненты тока, обусловленные движением положительных и отрицательных ионов соответственно. Рекомбинация ионов и их диффузия будут уменьшать величины J+ и J-. Если диффузией и рекомбинацией пренебречь, то плотность тока можно выразить через средние скорости движения зарядов вдоль силовых линий поля w+ и w-. Эти средние скорости называются скоростями дрейфа. Очевидно, что

J+=n+ew+, J-=n-ew-,

где n+ и n-количество ионов и электронов в единице объема (плотность ионов, электронов).

Рассмотрим более подробно дрейф зарядов в поле. Пусть в некоторый момент в объеме газа прошли заряженные частицы и образовали свободные электроны и ионы. Если внешнего поля нет, то ионы и электроны между соударениями движутся прямолинейно. Их движение можно характеризовать:

  • средним числом соударений в единицу времени ν;

  • средним свободным пробегом между соударениями λ;

  • средней скоростью теплового движения υ.

Очевидно, что λ = υ/ν. Когда имеется внешнее электрическое поле, то ионы между соударениями движутся уже под действием поля, их пути становятся параболическими, что само по себе при слабых полях не изменяет величин υ, v и λ, и за время между двумя соударениями ионы сдвигаются в направлении соответствующих электродов. Оказывается, что сравнительно быстро устанавливается средняя скорость движения ионов к соответствующим электродам при постоянном электрическом поле. Действительно, за время Δt произойдет vΔt соударений и за это время ион сместится вдоль поля на величину Δх, т.е. за время Δt ион приобретает энергию еЕΔх. В то же время в результате упругих и неупругих соударений заряд потеряет часть своей энергии.

Если считать, что при каждом столкновении теряется доля энергии, равная fЕ (Е – кинетическая энергия иона), то за время Δt потери составят vfEΔt. Покa потери энергии будут меньше, чем ее увеличение за счет движения в поле, энергия ионов будет расти. Равновесие между приростом и потерями энергии наступает главным образом потому, что потери энергии при одном столкновении пропорциональны кинетической энергии нона. Насколько быстро наступает равновесие, зависит от доли f энергии, теряемой в одном столкновении. Для тяжелых ионов можно считать, что в каждом соударении теряется в среднем половина энергии. Поэтому тяжелые ионы не могут приобрести большой кинетической энергии и электрическое поле очень мало меняет средние величи­ны v и λ, характеризующие их движение. Электроны, напротив, при одном столкновении теряют малую долю своей энергии. Следовательно, электроны в электрическом поле могут приобрести большую энергию, верхняя граница которой определяется нижними уров­нями, возбуждаемыми при неупругих соударениях.

Для ионов скорость дрейфа пропорциональна напряженности поля и братно пропорциональна давлению газа w+ = μ+E/p, где μ+– коэффициент пропорциональности, называемый подвижностью ионов, который равен скорости дрейфа ионов в поле с единичной напряженностью и при единичном давлении. Скорость дрейфа ионов можно вычислить довольно просто, если предположить, что эта средняя скорость в направлении электродов приобретается ионами между двумя соударениями. Такое предположение для тяжелых ионов выполняется достаточно хорошо, поскольку в этом случае f велико. Тогда средняя скорость определяется силой, действующей на ион еЕ/М где М – масса иона, и средним временем ее действия ‹t› Среднее время между двумя соударениями ‹t› пропорционально среднему пробегу между соударениями и обратно пропорционально средней скорости теплового движения, т.е.

w = (eE/M)‹t›≈(eE/M)(λ0/).

Как уже отмечалось выше, тяжелые ионы будут очень мало изменить свою энергию за счет действия электрического поля, поскольку в каждом соударении происходит интенсивный обмен энергией. А это значит, что величины υ и λ0 можно считать независимыми от величины напряженности поля Е. Обозначая μ = e λ0/Mυ, получаем

w= μ(E/p).

Используя связь кинетической энергии ионов с температурой Е=3/2(kT), можно связать подвижность ионов с коэффициентом диффузии:

μ = (e/kT)Dp.

Величины подвижностей положительных и отрицательных ионов близки между собой. Подвижности тем меньше, чем тяжелее молекулы. Такую зависимость можно попять, если в первом приближении считать свободный пробег одинаковым для всех газов. В этом случае подвижность обратно пропорциональна корню квадратному из массы иона. Поскольку потери энергии электронами при одном соударении малы, то в электрическом поле электроны приобретают энергию, заметно превышающую энергию теплового движения. Поэтому величины среднего пробега и скорость движения между соударениями для электронов будут зависеть от величины напряженности электрического поля. По этим причинам для электронов скорость дрейфа является сложной функцией напряженности поля.

Ионизационные камеры в токовом режиме

Устройство камер

Ионизационные камеры могут быть самых различных конфигураций (плоские, цилиндрические, сферические) и объемов (от долей 1 см3 при измерениях тепловыделения в экранах реакторов до десятков и сотен литров при исследовании распределения рассеянного излучения в воздухе). Основные особенности ионизационных камер можно проиллюстрировать на примере плоской камеры, схема которой изображена на рис. 2. На этом же рис. показана и схема подключения камеры к измерителю тока.

1 – электроды; 2 – изоляторы; 3 – охранные кольца; 4 – корпус камеры

Рис. 2. Устройство плоской ионизационной камеры

Электроды камеры необходимо тщательно изолировать друг от друга. Сопротивление изоляции и приложенное рабочее напряжение Uо определяют, в конечном счете, тот минимальный ток, созданный за счет ионизации, который можно измерить в камере.

Чем меньше величина измеряемого тока, тем больше должно быть сопротивление изоляторов. Изоляторы должны обладать хорошим поверхностным сопротивлением. Это, в частности, предъявляет ряд требований к материалам изоляторов – они должны хорошо обрабатываться, не адсорбировать влагу, быть устойчивыми к облучению и т.д. Такие изоляторы, как тефлон и полистирол, в больших полях ионизирующего излучения изменяют свои электриче­ские свойства – их сопротивление уменьшается. Поэтому при больших интегральных потоках или при больших мощностях излучения лучше использовать неорганические изоляторы, такие, как кварц и окись алюминия. Удельное объемное сопротивление многих изоляторов достаточно велико, и токи утечки получаются малые по сравнению с током, обусловленным космическим излучением и естественной радиоактивностью. Но токи утечки по поверхности изоляторов могут быть значительно больше токов утечки за счет внутреннего сопротивления изоляторов.

Прежде чем рассмотреть пути уменьшения токов утечки, остановимся на другой причине, определяющей нижний предел измеряемых токов, – на космическом фоне и активности всех материалов. Одна α-частица в 1 час создает ток, средняя величина которого около 10-17 а. Многие материалы испускают некоторое количество α-частиц. Так, с площади 100 см2 стали испускается примерно 3 α-частица/час, а со 100 см2 припоя – около 3000 α-частиц/час. Космическое излучение и почва дают до 2·10-18 а с 1 cм3 камеры.

Таким образом, для камер объемом до 100 см3 при необходимо­сти измерения малых токов следует добиваться, чтобы токи утечки были менее 10-16 а. Их можно уменьшить, используя охранные электроды. Применение охранного электрода позволяет иметь небольшую, близкую к нулю разность потенциалов между охранным электродом и собирающим. Это особенно наглядно видно на диаграмме эквивалентных схем камеры с охранным электродом и без него (рис. 3).

без охранного кольца (а) и с ним (б) эквивалентные схемы включения камер:

Rи = R1 + R2 – сопротивление изоляторов камеры; R – нагрузочное сопротивление

Рис. 3. Схема цилиндрической камеры

Применение охранных электродов позволяет получить токи утечки меньше 10-16 а, т.е. токи, величина которых мала в сравнении с токами, обусловленными космическим излучением в камерах ус объемом более 100 см3. Не менее важное значение охранные электроды имеют и для выравнивания поля в камерах. При точных намерениях токов, вызванных ионизирующим излучением, необходимо точно определить рабочий объем камеры и быть уверенным, что в нем поле достаточно для получения токов насыщения.

Ток в камере при постоянной ионизации

Пусть в рабочем объеме плоской камеры площадью s и с расстоянием между электродами d возникает в единицу времени в единице объема nо пар ионов. Если эта величина постоянна во времени, то ток в камере при пренебрежении потерями зарядов в результате диффузии и рекомбинации

I = en0sd.

Это соотношение следует из закона сохранения зарядов.

В случае постоянной ионизации ток в камере можно выразить через плотности токов, образуемых дрейфом положительных и отрицательных зарядов:

I = (j+ + j-)s,

где j+ и j-) – плотности соответствующих токов. Плотность тока – это произведение скорости движения зарядов на их плотность, т. е

j+ = en+w+ и j- = en-w-.

Задача о токе в плоской камере с учетом диффузии и рекомбинации легко решается, если предположить, что уменьшение тока за счет диффузии и рекомбинации мало и, что более важно, диффузия и рекомбинация не изменяют заметным образом распределений плотности зарядов п+(х) и п-(х). Плотность тока с учетом диффузии

j+ = en+w+D+(dn+/dx)e.

Физический смысл второго члена в правой части выражения для плотности тока следующий. Ток в газе протекает даже при отсутствии электрического поля в результате неоднородности распределения зарядов. Величина этого тока в заданном направлении определяется произведением коэффициента диффузии на градиент плотности зарядов. Здесь следует заметить, что в рассматриваемой плоской камере при постоянной ионизации неоднородность в распределении зарядов будет лишь в направлении электрического поля.

Потери тока за счет рекомбинации очень сильно зависят от размеров камеры. Они могут быть велики, если в камере образуются электроотрицательные ионы. Уменьшение расстояния между электродами всего на 20% снижает потери вдвое.

Если камеры наполнены газами, для которых мала вероятность образования электроотрицательных ионов, то эффекты рекомбинации имеют значение при регистрации тяжелых заряженных частиц с малой энергией, для которых очень велика плотность образуемых зарядов. Высокая плотность ионов в первый момент после ионизации приводит к рекомбинации ионов и электронов в колонках. Расчет этого эффекта очень сложен, тем более что рекомбинация в колонках зависит от очень многих причин и в том числе от ориентации пути частицы относительно силовых линий электрического поля камеры. Наименьшая рекомбинация в колонках будет для тех частиц, направление движения которых перпендикулярно силовым линиям поля. В этом случае заряды разных знаков разделяются наиболее быстро.