
- •Теорія ймовіностей та математична статистика
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Київська державна академія водного транспорту
- •«Теорія ймовірностей та математична статистика»
- •Скільки парних п’ятизначних чисел можна утворити з цифр 0, 1, 2, 3, 4 так, щоб усі цифри числа були різними?
Київська державна академія водного транспорту
Кафедра математики
Модульна контрольна робота №1 з дисципліни
«Теорія ймовірностей та математична статистика»
Спеціальність: Менеджмент організацій
Курс: 2
Семестр:2
Форма навчання: денна
ВАРІАНТ 9
Визначте кількість можливих семицифрових телефонних номерів, якщо перші три цифри не дорівнюють нулю і жодна цифра у номері не повторюється.
В ящику 15 білих і 10 чорних кульок. Навмання виймають дві кульки. Знайти ймовірність того, що серед них: а) обидві кульки білі; б) обидві кульки чорні; в) обидві кульки однакового кольору; г) дістали кульки різних кольорів; д) хоча б одна кулька біла.
Відділ технічного контролю перевіряє вироби на якісність. Ймовірність того, що виготовлений виріб є неякісним, дорівнює 0,1. Знайти ймовірність того, що серед чотирьох перевірених виробів: а) один виріб якісний; б) два вироби якісні; в) хоча б два вироби якісні; г) не більше двох бракованих виробів; д) хоча б один виріб якісний.
З 20 стрільців 8 влучають у мішень з ймовірністю 0,8; 7 – з ймовірністю 0,6 і 5 – з ймовірністю – 0,5. Навмання вибраний стрілець, зробивши один постріл в мішень, не влучив. Знайти ймовірність того, що він належав до першої групи.
В партії з 30 деталей 5 бракованих. Перевіряють навмання вибрані 3 деталі. {число якісних деталей серед 3 деталей, що перевіряють}.Скласти закон розподілу дискретної випадкової величини . Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення .
Відомо, що випадкова величина може набувати тільки два значення : та , причому . Скласти закон розподілу випадкової величини , якщо відомо значення ймовірності можливого значення , значення математичного сподівання та дисперсії :
Затверджено на засіданні кафедри математики КДАВТ.
Протокол № від « » 2010р.
Екзаменатор ___________________ в.о. доцента Кліндухова В.М.,
кандидат пед. наук
Зав. кафедрою ___________________ доцент Ляшко О.В.,
кандидат фіз.-мат. наук
Київська державна академія водного транспорту
Кафедра математики
Модульна контрольна робота №1 з дисципліни
«Теорія ймовірностей та математична статистика»
Спеціальність: Менеджмент організацій
Курс: 2
Семестр:2
Форма навчання: денна
ВАРІАНТ 10
Скільки тризначних чисел можна утворити з цифр 0, 1, 2, 3, 4, 5, якщо жодна з цифр не повторюється?
В ящику 15 білих і 10 чорних кульок. Навмання виймають дві кульки. Знайти ймовірність того, що серед них: а) обидві кульки білі; б) обидві кульки чорні; в) обидві кульки однакового кольору; г) дістали кульки різних кольорів; д) хоча б одна кулька біла.
В родині п’ятеро дітей. Знайти ймовірність того, що серед них : а) всі дівчинки; б) одна дівчинка; в) хоча б одна дівчинка; г) не більше трьох дівчинок; д) не менше трьох дівчинок. Ймовірність народження дівчинки при обчисленнях взяти рівною 0,49
Є шість однакових ящиків. В першому міститься 2 білі й 1 чорна кульки, в інших двох – по 3 білих і 2 чорних кульки, а втрьох решта – по 1 білій і 2 чорних кульки. Навмання вибирається один ящик і з нього навмання виймається кулька. Знайти ймовірність того, що вона біла.
Ймовірність влучення в ціль для стрільця за умови одного пострілу дорівнює 0,6. Стрілець зробив два постріли. {число влучень стрільця}.Скласти закон розподілу дискретної випадкової величини . Обчислити математичне сподівання, дисперсію та середнє квадратичне відхилення .
Відомо, що випадкова величина може набувати тільки два значення : та , причому . Скласти закон розподілу випадкової величини , якщо відомо значення ймовірності можливого значення , значення математичного сподівання та дисперсії :
Затверджено на засіданні кафедри математики КДАВТ.
Протокол № від « » 2010р.
Екзаменатор ___________________ в.о. доцента Кліндухова В.М.,
кандидат пед. наук
Зав. кафедрою ___________________ доцент Ляшко О.В.,
кандидат фіз.-мат. наук