
- •Лаборат орная работа №1 Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов
- •Стабилитроны
- •Порядок выполнения работы Исследование статических характеристик диода.
- •Исследование динамических характеристик диода.
- •Исследование статических характеристик биполярного транзистора.
- •Исследование динамических характеристик биполярного транзистора.
- •Содержание отчета
Стабилитроны
Стабилитрон – это диод с точно заданным напряжением пробоя, рассчитанный на непрерывную работу в области пробоя и предназначенный для стабилизации или ограничения напряжения. Напряжение пробоя UBR стабилитронов обозначается символом UZ и у стандартных образцов составляет UZ ≈ 3…400 В. Условное графическое обозначение и вольтамперная характеристика стабилитрона представлены на рис. 1.3 .
Рис. 1.3 Стабилитрон: а – условное обозначение; б – вольтамперная характеристика
Напряжение зенеровского пробоя UZ зависит от температуры. Температурный коэффициент описывает относительное изменение напряжения пробоя при постоянном токе:
Дифференциальное сопротивление в области пробоя rZ соответствует обратной величине наклона вольтамперной характеристики.
Рис. 1. 4. Стабилизация напряжения с помощью стабилитрона: а – схема; б – вольтамперная характеристика
Биполярные транзисторы
Транзистор - это полупроводниковый прибор с двумя p-n-переходами, имеющий три вывода. В зависимости от чередования областей полупроводников с различными типами электропроводности различают транзисторы типа p-n-p и типа n-p-n. Их схематическое устройство и условное графическое обозначение показано на рисунке 4.2.
Центральный слой транзистора называют базой (Б), наружный слой, являющийся источником зарядов (электронов или дырок), – эмиттером(Э), а наружный слой, принимающий заряды, – коллектором(К).
На переход эмиттер – база напряжение источника Еэ подается в прямом направлении, и прямое сопротивление перехода мало, поэтому даже при малых Еэ возникает значительный ток эмиттер – база Iэ. На переход коллектор-база напряжение источника Ек подается в обратном направлении.
Рассмотрим работу транзистора типа p-n-p (рисунок 1.5) (транзистор типа n-p-n работает аналогично). При отсутствии источника Еэ эмиттерный ток Iэ=0, и в транзисторе через коллекторный переход в обратном направлении протекает малый ток (у кремниевых транзисторов Iк о= 0,1 ... 10 мкА).
При подключении источника Еэ возникает эмиттерный ток Iэ: дырки преодолевают переход эмиттер-база и попадают в область базы, где частично рекомбинируют со свободными электронами базы. Убыль электронов в базе пополняется электронами, поступающими из внешней цепи, образуя ток базы Iб. Благодаря диффузии часть дырок в базе, продолжая движение, доходит до коллектора и под действием электрического поля источника Ек проходит коллекторный p-n-переход. В цепи база-коллектор протекает ток Iк=Iэ–Iб.
Соотношение между приращениями эмиттерного и коллекторного токов характеризуют коэффициентом передачи тока
Так как IкIэ, то для биполярных транзисторов = 0,9 ... 0,995, и ток коллектора Iк=Iко+IэIэ.
Рассмотренная схема включения транзистора, где база является общим электродом для эмиттерной и коллекторной цепей, называется схемой с общей базой. Ее применяют крайне редко из-за низкого коэффициента передачи тока.
Существует три способа включения транзистора: с общей базой, с общим эмиттером (ОЭ), с общим коллектором (электрод, находящийся на входе и выходе схемы одновременно, определяет название схемы). Основной является схема с общим эмиттером (рис. 1.6,а), в которой входной ток равен току базы
Iб=Iэ–Iк=Iэ–(Iко+Iэ)=(1–)Iэ–IкоIэIк.
Широкое применение схемы с общим эмиттером обусловлено малым входным (управляющим) током Iб. Коэффициент передачи тока для схемы с общим эмиттером =Iк/Iб колеблется в пределах 10 ... 200.
Выходные характеристики отражают зависимость тока коллектора от напряжения между коллектором и эмиттером при Iб=const (рис. 1.6,в).
Режимы насыщения и отсечки
Для перехода из линейного режима в режим насыщения необходимо увеличивать ток базы до тех пор, пока напряжение на коллекторе не понизится до такого значения, при котором произойдет отпирание коллекторного перехода. Такая ситуация может возникнуть в схеме когда в коллекторной цепи включено сопротивление нагрузки Rн. В этом случае увеличение тока базы Iб приведет к увеличению тока коллектора Iк. В результате увеличится падение напряжения на нагрузке Rн и уменьшится напряжение на коллекторе Ukэ. Условием насыщения является
.
При глубоком насыщении транзистора выполняется условие Ukб>0. В любом случае при переходе в режим насыщения в базе протекает избыточный ток, т. е. ток базы превышает значение, необходимое для получения данного тока коллектора при работе транзистора в линейном режиме.
При глубоком насыщении транзистора в базе накапливается большое количество неосновных носителей, которые задерживают выключение транзистора.
Поскольку в режиме насыщения напряжение между коллектором и эмиттером достаточно малое, то в этом режиме транзистор можно заменить замкнутым ключом, на котором падает небольшое напряжение. Схема замещения транзистора в режиме насыщения приведена на рис.. В соответствии с этой схемой замещения напряжение на насыщенном ключе определяется по формуле
Другим ключевым режимом биполярного транзистора является режим отсечки. Перевести транзистор в режим отсечки можно приложением между базой и эмиттером обратного напряжения. Граничным режимом в этом случае является выполнение условия Ubэ = 0. В режиме отсечки транзистор можно заменить разомкнутым ключом, схема замещения которого приведена на рис.1.7 б. В соответствии с этой схемой замещения транзистор в режиме отсечки имеет некоторое достаточно большое сопротивление Ro и параллельно включенный ему генератор небольшого тока утечки На вольт-амперных характеристиках транзистора, приведенных на рис. 1.6а, режиму отсечки соответствует горизонтальная линия при Iб=0.
Динамические характеристики биполярного транзистора.
Динамические характеристики транзистора по-разному описывают его поведение в линейном или ключевом режимах. Для ключевых режимов очень важным является время переключения транзистора из одного состояния в другое. В то же время для усилительного режима транзистора более важными являются его свойства, которые показывают возможность транзистора усиливать сигналы различных частот.
Процессы включения и выключения транзисторного ключа показаны на рис. 1.8. При включении транзистора (рис. 1.8 а) в его базу подается прямоугольный импульс тока с крутым фронтом. Ток коллектора достигает установившегося значения не сразу после подачи тока в базу. Имеется некоторое время задержки t3 спустя которое появляется ток в коллекторе. Затем ток в коллекторе плавно нарастает и после времени tнар достигает установившегося значения Ik вкл, таким образом
При выключении транзистора на его базу подается обратное напряжение, в результате чего ток базы меняет свое направление и становится равным Iб.вык. Пока происходит рассасывание неосновных носителей заряда в базе, этот ток не меняет своего значения. Это время называется временем рассасывания tрас. После окончания процесса рассасывания происходит спад тока базы, который продолжается в течение времени tcп. Таким образом, время выключения транзистора равно