
- •Лаборат орная работа №1 Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов
- •Стабилитроны
- •Порядок выполнения работы Исследование статических характеристик диода.
- •Исследование динамических характеристик диода.
- •Исследование статических характеристик биполярного транзистора.
- •Исследование динамических характеристик биполярного транзистора.
- •Содержание отчета
Лаборат орная работа №1 Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов
Цель работы: Цель работы: исследование вольт-амперных и динамических характеристик работы полупроводниковых диодов и транзисторов, а также общих принципов их использования в электронных цепях.
Полупроводниковые диоды
Диод представляет собой полупроводниковый элемент с двумя выводами, один из которых называют анодом (А), а другой – катодом (К). Различают дискретные диоды в виде отдельного элемента, предназначенного для монтажа на плате и заключенного в собственный корпус, и интегральные диоды, которые вместе с другими элементами схемы изготавливаются на общей полупроводниковой подложке. У интегральных диодов имеется третий вывод, необходимый для соединения с общей подложкой.
Материалом для таких диодов обычно служит кремний или арсенид галлия.. Кремниевые сплавные диоды используются для выпрямления переменного тока с частотой до 5 кГц. Кремниевые диффузионные диоды могут работать на повышенной частоте, до 100 кГц. Кремниевые эпитаксиальные диоды с металлической подложкой (с барьером Шотки) могут использоваться на частотах до 500 кГц. Арсенидгаллиевые диоды способны работать в диапазоне частот до нескольких МГц.
При большом токе через р-n-переход значительное напряжение падает в объеме полупроводника, и пренебрегать им нельзя. Вольт-амперная характеристика выпрямительного диода имеет вид
где R — сопротивление объема полупроводникового кристалла, которое называют последовательным сопротивлением.
Условное графическое обозначение полупроводникового диода приведено на рис. 1.1 а, а его структура на рис. 1.1 б. Электрод диода, подключенный к области Р, называют анодом, а электрод, подключенный к области N, — катодом. Статическая вольт-амперная характеристика диода показана на рис. 1.1 в.
Рис. 1.1 Условное обозначение полупроводникового диода (а), его структура (б) и вольт-амперная характеристика (в)
Силовые диоды обычно характеризуют набором статических и динамических параметров. К статическим параметрам диода относятся:
падение напряжения Unp на диоде при некотором значении прямого тока;
обратный ток Iобр при некотором значении обратного напряжения;
среднее значение прямого тока Iпр.ср;
импульсное обратное напряжение Uoбpм.
К динамическим параметрам диода относятся его временные или частотные характеристики. К таким параметрам относятся:
время восстановления tвос обратного напряжения;
время нарастания прямого тока tнар;
время рассасывания избыточного заряда базы tрас.
Статические параметры можно установить по вольт-амперной характеристике диода, которая приведена на рис. 1.1 в
Динамические характеристики диода
Рис. 1.2 Работа диода в режиме переключений
Время обратного восстановления диода tвос является основным параметром выпрямительных диодов, характеризующим их инерционные свойства. Оно определяется при переключении диода с заданного прямого тока Iпр на заданное обратное напряжение Uобр. Графики такого переключения приведены на рис. Схема испытания, представляет собой однополупериодный выпрямитель, работающий на резистивную нагрузку Rн и питаемый от источника напряжения прямоугольный формы.
Напряжение на входе схемы в момент времени t=0 скачком приобретает положительное значение Um. Из-за инерционности диффузионного процесса ток в диоде появляется не мгновенно, а нарастает в течение времени tнар. Совместно с нарастанием тока в диоде снижается напряжение на диоде, которое после tнар становится равным Unp. В момент времени t1 в цепи устанавливается стационарный режим, при котором ток диода i=Iн - Um/Rн.
Такое положение сохраняется вплоть до момента времени t2, когда полярность напряжения питания меняется на противоположную. Однако заряды, накопленные на границе p-n-перехода, некоторое время поддерживают диод в открытом состоянии, но направление тока в диоде меняется на противоположное. По существу, происходит рассасывание зарядов на границе p-n -перехода (т. е. разряд эквивалентной емкости). После интервала времени рассасывани начинается процесс выключения диода, т. е. процесс восстановления его запирающих свойств