
- •А.М. Сафарбаков, А.В. Лукьянов, С.В. Пахомов
- •Тема 5. Методы и программы поиска места отказа…………………………….60
- •1.1. Основные понятия и определения технической диагностики
- •1.2. Показатели контролепригодности изделий АТ
- •Заключение
- •1.1. Основные понятия и определения технической диагностики
- •диагностики
- •План лекции
- •диагностики
- •План лекции
- •Тема 3. Статистические методы распознавания признаков
- •План лекции
- •План лекции
- •План лекции
- •Тема 5. Методы и программы поиска места отказа
- •План лекции
- •Тема 6. Физические методы контроля в технической диагностике
- •План лекции
- •Тема 6. Физические методы контроля в технической диагностике
- •План лекции
- •6.7.1. Средства контроля температуры
- •6.7.2. Бесконтактные методы термометрии
- •План лекции
- •7.1. Диагностика устройств контактной сети
- •План лекции
- •7.2. Диагностика опор контактной сети
- •7.3. Диагностика подвесной изоляции и цепей заземления
- •План лекции
- •План лекции
- •7.5. Диагностика токоведущих шин и контактных соединений
- •7.6. Диагностика выключателей переменного и постоянного тока
- •7.5. Диагностика токоведущих шин и контактных соединений
- •План лекции
- •7.7. Диагностика кабельных линий электропередач
- •7.7. Диагностика кабельных линий электропередач
- •План лекции
- •7.10. Диагностика параметров работы рельсовых цепей
- •План лекции
- •централизации
- •План лекции
- •7.15. Диагностирование радиосредств
- •7.16. Комплекс измерительных средств в системе транспорт
- •План лекции
- •8.2. Оценка точности контролируемых параметров
92
тижении заданной температуры. Действие термолаков аналогично. Термосвидетели представляют собой нанизанные на тугоплавкую проволоку пластинки из металлов, плавящихся при различных температурах.
Действие люминофорных термоиндикаторов основано на температурной зависимости цвета или интенсивности люминесценции некоторых веществ, например, сульфидов цинка и кадмия. Недостатком люминофорных индикаторов является необходимость точной стабилизации возбуждающего люминесценцию излучения (обычно ультрафиолетового).
Принцип действия изооптических термоиндикаторов (ИОТ) основан на эффекте Христиансена, заключающегося в рассеянии света смесью двух прозрачных сред (например, порошок стекла в глицерине). При совпадении этих показателей для какой-либо частоты света наблюдается селективное усиление направленного пропускания смеси. Зависимость дисперсионной характеристики некоторых органических жидкостей от температуры приводит к изменению цвета смеси в проходящем свете при ее нагреве. ИОТ выпускаются в виде тонкостенных стеклянных капсул.
6.7.2. Бесконтактные методы термометрии
Действие пирометров излучения основано на фотоэлектрической, визуальной и фотографической регистрации интенсивности теплового излучения нагретых тел, пропорционального их температуре. Пирометры обычно имеют объектив для фокусировки излучения на фотодетектор, светофильтры и блок электронной обработки сигнала. При контроле температуры объектов в труднодоступных полостях применяют пирометры в сочетании с волоконнооптическими световодами. Калибровка пирометров проводится по эталонным источникам [абсолютно черное тело (АЧТ), пирометрические лампы и т.д.].
Яркостными пирометрами измеряют спектральную яркость объекта на определенной длине волны, которая сравнивается с яркостью АЧТ. В качестве АЧТ используется спираль специальной лампы накаливания. Яркостные пирометры применяют для измерения высоких температур (св. 600 °С), при которых тела начинают излучать в видимой области, а интенсивность излучения достаточна для его регистрации в узком спектральном диапазоне визуально или с помощью фотоприемников типа ФЭУ, фотодиода.
Цветовыми пирометрами измеряют интенсивность излучения объекта в двух узких зонах спектра, отношение которых сравнивается с соответствующим отношением для АЧТ. Показания цветовых пирометров не зависят от коэффициента излучения объектов.
Радиационные пирометры, работающие в широком спектральном диапазоне, используют для измерения температуры слабонагретых тел.
Применяют объективы из материалов, прозрачных в соответствующей спектральной области. Стекло используют для измерения температур от 900 °С. Кварц применяют для регистрации температур более 400 °С. Объективы из фтористого лития или фтористого бария позволяют фиксировать температуры в диапазоне 20—500 °С. Часто используют также зеркальную оптику.
93
Существенное влияние на показания радиационного пирометра оказывает состояние поверхности контролируемого объекта, поскольку оно связано с его излучательной способностью.
Современные модели пирометров снабжаются микропроцессором, реализующим запоминание максимальной, средней и минимальной температур за время измерения, коррекцию излучательной способности, автокалибровку прибора и другие функции.
Рекомендованная литература: [7]