
- •Метрология, стандартизация и сертификация Курс лекций Москва – 2011
- •Предмет, задачи и содержание курса «мсс»
- •Как связаны стандартизация, метрология и сертификация.
- •Рекомендуемая литература.
- •Лекция №2 Метрология
- •Предмет метрологии
- •Структура теоретической метрологии
- •Физические свойства и величины
- •Классификация физических величин
- •Качественная характеристика измеряемых величин
- •Количественная характеристика измеряемых величин
- •Системы физических величин и единиц
- •Внесистемные единицы, допускаемые к применению наравне с единицами си
- •Измерительные шкалы
- •Лекция №3 Основные понятия теории погрешностей
- •Правила округления результатов измерений [8]
- •Лекция №4 Систематические погрешности
- •Способы обнаружения и устранения систематических погрешностей
- •Лекция №5 Случайные погрешности
- •Вероятностное описание результатов и погрешностей
- •Числовые параметры законов распределения
- •Лекция №6 Случайные погрешности. Оценка результата измерения.
- •Оценка результата измерения
- •Грубые погрешности и методы их исключения
- •5. Критерий Шовене
- •Лекция №7 Характеристики нормального распределения
- •Оценка случайных погрешностей. Доверительная вероятность и доверительный интервал
- •Лекция №8 Обработка результатов измерений
- •1. Определение точечных оценок закона распределения результатов измерений.
- •2. Определение закона распределения результатов измерений или случайных погрешностей измерений.
- •Определение закона распределения результатов измерений
- •Значения р для вычисления
- •Лекция №9 Единство измерений.
- •Эталоны единиц физических величин Классификация эталонов
- •Поверочные схемы
- •Лекция №10 Основы техники измерений параметров технических систем.
- •Основные постулаты теории измерений (метрологии)
- •Виды измерений. Классификация
- •Методы измерений
- •Лекция №11 Средства измерений
- •Классификация средств измерений
- •Метрологические характеристики си
- •Метрологические характеристики средств измерений и их нормирование
- •Лекция №12 Разработка методики выполнения измерений
- •Классы точности средств измерений
- •Надежность средств измерения
- •Выбор средств измерений
- •Основные этапы измерения
- •Лекция №13 Закон «о техническом регулировании».
- •Реформа технического регулирования
- •Недостатки действовавшей системы
- •Содержание закона
- •Объекты технического регулирования
- •Сфера применения фз «о техническом регулировании»
- •Основные понятия фз «о техническом регулировании»
- •Принципы технического регулирования
- •Особенности технического регулирования в отношении оборонной продукции и продукции, сведения о которой составляют государственную тайну
- •Порядок разработки, принятия, изменения и отмены технического регламента (ст. 9)
- •Закон «Об обеспечении единства измерений». Основные положения.
- •Цели и сфера действия Федерального закона (Статья 1)
- •Основные понятия (статья 2)
- •Лекция №14 Основы стандартизации.
- •Понятия в области Стандартизации
- •Цели стандартизации (ст. 11 фз «о техническом регулировании»)
- •Принципы стандартизации (ст. 12)
- •Документы в области стандартизации (ст. 13)
- •Методы стандартизации
- •Лекция №15 Подтверждение соответствия
- •Основные понятия
- •Цели подтверждения соответствия
- •Принципы подтверждения соответствия
- •Формы подтверждения соответствия
- •Добровольное и обязательное подтверждение соответствия.
- •Декларирование соответствия
- •Обязательная сертификация, организация обязательной сертификации.
- •Знак обращения на рынке.
- •Контрольные вопросы
- •Метрология. Основные понятия
- •Физические единицы и величины. Шкалы
- •Литература
Виды измерений. Классификация
Вид измерений – часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин. Виды измерений определяются физическим характером измеряемой величины, требуемой точностью измерения, необходимой скоростью измерения, условиями и режимом измерений и т.д. В метрологии существует множество видов измерений, и число их постоянно увеличивается (рис.).
Можно, например, выделить виды измерений в зависимости от:
− (1) метода измерений: непосредственной оценки, сравнения с мерой, дополнения, дифференциальный, нулевой, замещения (совпадений);
− (2) условий измерений: равноточные, неравноточные;
Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
Наиболее часто используют классификацию видов измерений (3) по способу получения числового значения измеряемой величины. В этом случае все измерения делят на четыре основных вида:
− прямые измерения;
− косвенные измерения;
− совокупные измерения;
− совместные измерения.
− (4) числа измерений величины: однократные, многократные;
Однократное измерение – измерение выполненное один раз.
Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящее из ряда однократных измерений
− (5) связи с объектом: бесконтактные, контактные;
Контактный метод измерений
Метод измерений, основанный на том, что чувствительный элемент прибора приводится в контакт с объектом измерения.
Бесконтактный метод измерений
Метод измерений, основанный на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения.
− (6) степени достаточности измерений: необходимые, избыточные.
− (7) цели измерений: контрольные, диагностические и прогностические, лабораторные и технические, эталонные и поверочные, абсолютные и относительные и т.д.;
− (8) характера результата измерений: абсолютные, допусковые (пороговые), относительные;
Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
Пример — Измерение силы F = mg основано на измерении основной величины — массы т и использовании физической постоянной g (в точке измерения массы).
Примечание — Понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах. В таком понимании это понятие находит все большее и большее применение.
Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.
Прямыми называют измерения, при которых искомое значение величины находят непосредственно из опытных данных. Простейшие примеры прямых измерений: измерение длины линейкой, температуры – термометром, электрического напряжения – вольтметром и пр. Прямые измерения – основа более сложных видов измерений. (Иногда применяют термин «прямой метод измерений»)
Косвенными
называют
измерения, результат которых определяют
на основе прямых измерений величин,
связанных с измеряемой величиной
известной зависимостью
,
где
–
результаты прямых измерений, y
–
измеряемая величина. (Иногда
применяют термин «косвенный метод
измерений»)
Находить значения некоторых величин легче и проще путем косвенных измерений, чем путем прямых. Иногда прямые измерения невозможно осуществить. Нельзя, например, измерить плотность твердого тела, определяемую обычно по результатам измерений объема и массы. Косвенные измерения некоторых величин позволяют получить значительно более точные результаты, чем прямые.
Рисунок – Классификация видов измерений
Совокупные измерения. Проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
Совместными называют производимые одновременно измерения двух или нескольких неодноименных величин с целью нахождения функциональной зависимости между ними.
Таким образом, любой процесс измерения представляет собой тот или иной прием сравнения измеряемой величины с величиной воспроизводимой мерой при использовании различных средств измерений.