
- •Глава 1. Основы коммутации
- •1.1 Эволюция локальных сетей
- •1.2 Функционирование коммутаторов локальной сети
- •1.3 Методы коммутации
- •1.4 Конструктивное исполнение коммутаторов
- •1.5 Физическое стекирование коммутаторов
- •1.6 Типы интерфейсов коммутаторов
- •1.7 Архитектура коммутаторов
- •1.7.1 Архитектура с разделяемой шиной
- •1.7.2 Архитектура с разделяемой памятью
- •1.7.3 Архитектура на основе коммутационной матрицы
- •1.8 Характеристики, влияющие на производительность коммутаторов
- •1.8.1 Скорость фильтрации и скорость продвижения кадров
- •1.8.2. Размер таблицы коммутации
- •1.8.3. Объем буфера кадров
- •1.9. Управление потоком в полудуплексном и дуплексном режимах
- •1.10. Технологии коммутации и модель osi
- •1.11. Программное обеспечение коммутаторов
- •1.12. Общие принципы сетевого дизайна
- •1.13 Трехуровневая иерархическая модель сети
- •Глава 2. Начальная настройка коммутатора
- •2.1 Классификация коммутаторов по возможности управления
- •2.2. Средства управления коммутаторами
- •2.3. Подключение к коммутатору
- •2.3.1. Подключение к консоли интерфейса командной строки коммутатора
- •2.4 Начальная конфигурация коммутатора
- •2.4.1. Вызов помощи по командам
- •2.4.2. Базовая конфигурация коммутатора
- •2.5. Подключение к Web-интерфейсу управления коммутатора
- •2.6. Загрузка нового программного обеспечения на коммутатор
- •2.7. Загрузка и резервное копирование конфигурации коммутатора
- •Глава 3. Обзор функциональных возможностей коммутаторов
- •Глава 4. Виртуальные локальные сети (vlan)
- •4.1 Типы vlan
- •4.2 Vlan на основе портов
- •4.3. Vlan на основе стандарта ieee 802.1q
- •4.3.1 Некоторые определения ieee 802.1q
- •4.3.2. Теги vlan 802.1q
- •4.3.4. Продвижение кадров vlan 802.1q
- •4.3.5. Пример настройки vlan 802.1q
- •4.4. Статические и динамические vlan
- •4.5. Протокол gvrp
- •4.5.1 Таймеры gvrp
- •4.5.2. Пример настройки протокола gvrp
- •4.6.1. Формат кадра q-in-q
- •4.6.2 Реализации q-in-q
- •4.6.3 Значения tpid в кадрах q-in-q vlan
- •4.6.4 Роли портов в Port-based q-in-q и Selective q-in-q vlan
- •4.6.5. Политики назначения внешнего тега и приоритета в q-in-q vlan
- •4.6.6. Базовая архитектура сети с функцией Port-based q-in-q
- •4.6.7. Пример настройки функции Port-based q-in-q
- •4.6.8. Пример настройки функции Selective q-in-q
- •4.7. Vlan на основе портов и протоколов – стандарт ieee 802.1v
- •4.7.1 Пример настройки ieee 802.1v vlan
- •4.8 Асимметричные vlan
- •4.8.1. Примеры настройки асимметричных vlan
- •4.9. Функция Traffic Segmentation
- •4.9.1 Примеры использования и настройки функции Traffic Segmentation
- •Глава 5. Функции повышения надежности и производительности
- •5.1 Протоколы Spanning Tree
- •5.2.1. Понятие петель
- •5.2.2. Построение активной топологии связующего дерева
- •5.2.4 Состояния портов
- •5.2.5 Таймеры stp
- •5.2.6 Изменение топологии
- •5.2.8. Настройка stp
- •5.3.1 Роли портов
- •5.3.2. Формат bpdu
- •5.3.3. Быстрый переход в состояние продвижения
- •5.3.4 Механизм предложений и соглашений
- •5.3.5 Новый механизм изменения топологии
- •1. Определение изменений топологии.
- •2. Распространение информации об изменении топологии.
- •5.3.6 Стоимость пути rstp
- •5.3.7. Совместимость с stp
- •5.3.8. Настройка rstp
- •5.4.1 Логическая структура mstp
- •5.4.3. Формат mstp bpdu
- •5.4.4 Вычисления в mstp
- •5.4.5 Роли портов mstp
- •5.4.6 Пример топологии mstp
- •5.4.7 Состояние портов mstp
- •5.4.8 Счетчик переходов mstp
- •5.4.9 Совместимость с stp и rstp
- •5.4.10 Настройка протокола mstp на коммутаторах
- •5.5 Дополнительные функции защиты от петель
- •5.5.1 Настройка функции LoopBack Detection
- •5.6 Функции безопасности stp
- •5.7 Агрегирование каналов связи
- •5.7.1 Настройка статических и динамических агрегированных каналов
- •Глава 6. Качество обслуживания (QoS)
- •6.1. Модели QoS
- •6.2. Приоритезация пакетов
- •6.3. Классификация пакетов
- •4 Очереди приоритетов
- •8 Очередей приоритетов
- •6.4. Маркировка пакетов
- •6.5. Управление перегрузками и механизмы обслуживания очередей
- •6.6. Механизм предотвращения перегрузок
- •6.7 Контроль полосы пропускания
- •6.8 Пример настройки QoS
- •Глава 7. Функции обеспечения безопасности и ограничения доступа к сети
- •7.1 Списки управления доступом (acl)
- •7.1.1 Профили доступа и правила acl
- •7.1.2 Примеры настройки acl
- •7.2 Функции контроля над подключением узлов к портам коммутатора
- •7.2.1 Функция Port Security
- •7.2.1.1 Пример настройки функции Port Security
- •7.2.2 Функция ip-mac-Port Binding
- •7.2.2.1 Пример настройки функции ip-mac-Port Binding
- •7.3 Аутентификация пользователей 802.1x
- •7.3.1 Роли устройств в стандарте 802.1х
- •7.3.4. Состояние портов коммутатора
- •7.4.1. Пример настройки 802.1х Guest vlan
- •7.5 Функции защиты цпу коммутатора
- •7.5.1 Функция Safeguard Engine
- •7.5.1.1 Пример настройки функции Safeguard Engine
- •7.6.1 Функция cpu Interface Filtering
- •7.6.1.1 Пример настройки функции cpu Interface Filtering
- •Глава 8. Многоадресная рассылка
- •8.1 Адресация многоадресной ip-рассылки
- •8.3 Подписка и обслуживание групп
- •8.4 Управление многоадресной рассылкой на 2-м уровне модели osi (igmp Snooping)
- •8.4.1 Пример настройки igmp Snooping
- •8.5 Функция igmp Snooping Fast Leave
- •8.5.1. Пример настройки igmp Snooping Fast Leave
- •Глава 9. Функции управления коммутаторами
- •9.1 Управление множеством коммутаторов
- •9.1.1. Объединение коммутаторов в физический стек
- •9.1.2 Виртуальный стек. Технология Single ip Management (sim)
- •9.2 Протокол snmp
- •9.2.1 Компоненты snmp
- •9.2.2 База управляющей информации snmp
- •9.2.3 Типы сообщений протокола snmp
- •9.2.4 Безопасность snmp
- •9.2.5 Пример настройки протокола snmp
- •9.4 Функция Port Mirroring
- •Глава 10. Обзор коммутаторов d-Link
- •10.1 Неуправляемые коммутаторы
- •10.2 Коммутаторы серии Smart
- •10.3 Управляемые коммутаторы
6.6. Механизм предотвращения перегрузок
Механизм предотвращения перегрузок (Congestion avoidance) – это процесс выборочного отбрасывания пакетов с целью избежания перегрузок в сети в случае достижения выходными очередями своей максимальной длины (в пакетах).
Традиционной политикой обработки пакетов коммутаторами в случае переполнения всех выходных очередей является их отбрасывание, которое продолжается до тех пор, пока длина очередей не уменьшится за счет передачи находящихся в них пакетов. Такой алгоритм управления длиной выходных очередей получил название «отбрасывание хвоста» (Tail-Drop). Отбрасывание пакета будет служить сигналом о перегрузке сети источнику ТСР-соединения, т.к.он не получит подтверждения о доставке пакета от приемника ТСР-соединения. В этом случае он уменьшит скорость передачи путем уменьшения размера окна перегрузки до одного сегмента и перезапустит алгоритм медленного старта (slow start).
Поскольку коммутатор обрабатывает множество ТСР-потоков в один момент времени, отбрасывание пакетов послужит сигналом о перегрузке тысячам источникам ТСР-соединений, которые снизят скорость передачи. При этом почти все источники ТСР-соединений будут использовать одинаковое время таймеров задержки перед началом увеличения скорости передачи. Значения этих таймеров достигнут своего лимита практически в одно и тоже время, что вызовет увеличение интенсивности трафика и переполнение очередей, которое приведет к отбрасыванию пакетов, и весь процесс повторится вновь.
Процесс, когда каждый источник ТСР-соединения уменьшает и увеличивает скорость передачи одновременно с другими источниками ТСР-соединений, получил название эффекта глобальной синхронизации (global synchronization). Эффект глобальной синхронизации приводит к неэффективному использованию полосы пропускания, а также к возрастанию задержки передачи пакетов.
Для решения проблемы поведения источников ТСР-соединения в момент отбрасывания пакетов был разработан алгоритм произвольного раннего обнаружения (Random Early Detection, RED).
В отличие от алгоритма «отбрасывания хвоста», алгоритм RED отбрасывает поступающие пакеты вероятностно, на основе оценки среднего размера очередей. Средний размер очереди сравнивается с двумя пороговыми значениями – минимальным и максимальным. Если средний размер очереди превысит определенное минимальное пороговое значение, то пакеты начинают отбрасываться с некоторой вероятностью. Это позволяет избежать эффекта глобальной синхронизации, т.к. будут отбрасываться не все пакеты, а только пакеты произвольным образом выбранных потоков. Интенсивность отбрасывания пакетов возрастает прямо пропорционально возрастанию среднего размера очереди. Когда средний размер очереди превысит максимальное пороговое значение, алгоритм RED будет отбрасывать все пакеты, предназначенные для постановки в очередь.
В коммутаторах D-Link поддерживается простойалгоритм произвольного раннего обнаружения (Simple Random Early Detection , SRED), который является расширенной версией алгоритма RED, реализованной на основе ASIC, и выполняет вероятностное отбрасывание входящих «окрашенных» пакетов. «Окрашивание» пакетов позволяет реализовать разные политики обслуживания пакетов (различную вероятность отбрасывания) на основе их приоритетов. Так пакеты, «окрашенные» в зеленый цвет обладают наивысшим приоритетом. Пакеты «окрашенные» в желтый цвет – средним, в красный цвет – низшим приоритетом.
Алгоритм SRED позволяет задавать два пороговых значения размера для каждой очереди – минимальное и максимальное. Если длина очереди меньше минимального порогового значения, то пакеты будут помещаться в очередь. Если размер очереди будет находиться в интервале между минимальным и максимальным пороговыми значениями, т.е. будет наблюдаться умеренная перегрузка, то пакеты «окрашенные» в красные и желтые цвета будут отбрасываться с заданной вероятностью. Если длина очереди превысит максимальное пороговое значение, то пакеты любых цветов будут отбрасываться с заданной вероятностью. Т.е. алгоритм SRED обеспечивает возможность настройки более интенсивного отбрасывания пакетов низкоприоритетного трафика и менее интенсивного отбрасывания пакетов высоко приоритетного трафика.
В коммутаторах D-Link при настройке SRED существует возможность выбора из восьми значений скоростей(вероятностей) отбрасывания пакетов:
|
Скорость отбрасывания |
1 |
100% |
2 |
6.25% |
3 |
3.125% |
4 |
1.5625% |
5 |
0.78125% |
6 |
0.390625% |
7 |
0.1953125% |
8 |
0.09765625% |