
- •Глава 1. Основы коммутации
- •1.1 Эволюция локальных сетей
- •1.2 Функционирование коммутаторов локальной сети
- •1.3 Методы коммутации
- •1.4 Конструктивное исполнение коммутаторов
- •1.5 Физическое стекирование коммутаторов
- •1.6 Типы интерфейсов коммутаторов
- •1.7 Архитектура коммутаторов
- •1.7.1 Архитектура с разделяемой шиной
- •1.7.2 Архитектура с разделяемой памятью
- •1.7.3 Архитектура на основе коммутационной матрицы
- •1.8 Характеристики, влияющие на производительность коммутаторов
- •1.8.1 Скорость фильтрации и скорость продвижения кадров
- •1.8.2. Размер таблицы коммутации
- •1.8.3. Объем буфера кадров
- •1.9. Управление потоком в полудуплексном и дуплексном режимах
- •1.10. Технологии коммутации и модель osi
- •1.11. Программное обеспечение коммутаторов
- •1.12. Общие принципы сетевого дизайна
- •1.13 Трехуровневая иерархическая модель сети
- •Глава 2. Начальная настройка коммутатора
- •2.1 Классификация коммутаторов по возможности управления
- •2.2. Средства управления коммутаторами
- •2.3. Подключение к коммутатору
- •2.3.1. Подключение к консоли интерфейса командной строки коммутатора
- •2.4 Начальная конфигурация коммутатора
- •2.4.1. Вызов помощи по командам
- •2.4.2. Базовая конфигурация коммутатора
- •2.5. Подключение к Web-интерфейсу управления коммутатора
- •2.6. Загрузка нового программного обеспечения на коммутатор
- •2.7. Загрузка и резервное копирование конфигурации коммутатора
- •Глава 3. Обзор функциональных возможностей коммутаторов
- •Глава 4. Виртуальные локальные сети (vlan)
- •4.1 Типы vlan
- •4.2 Vlan на основе портов
- •4.3. Vlan на основе стандарта ieee 802.1q
- •4.3.1 Некоторые определения ieee 802.1q
- •4.3.2. Теги vlan 802.1q
- •4.3.4. Продвижение кадров vlan 802.1q
- •4.3.5. Пример настройки vlan 802.1q
- •4.4. Статические и динамические vlan
- •4.5. Протокол gvrp
- •4.5.1 Таймеры gvrp
- •4.5.2. Пример настройки протокола gvrp
- •4.6.1. Формат кадра q-in-q
- •4.6.2 Реализации q-in-q
- •4.6.3 Значения tpid в кадрах q-in-q vlan
- •4.6.4 Роли портов в Port-based q-in-q и Selective q-in-q vlan
- •4.6.5. Политики назначения внешнего тега и приоритета в q-in-q vlan
- •4.6.6. Базовая архитектура сети с функцией Port-based q-in-q
- •4.6.7. Пример настройки функции Port-based q-in-q
- •4.6.8. Пример настройки функции Selective q-in-q
- •4.7. Vlan на основе портов и протоколов – стандарт ieee 802.1v
- •4.7.1 Пример настройки ieee 802.1v vlan
- •4.8 Асимметричные vlan
- •4.8.1. Примеры настройки асимметричных vlan
- •4.9. Функция Traffic Segmentation
- •4.9.1 Примеры использования и настройки функции Traffic Segmentation
- •Глава 5. Функции повышения надежности и производительности
- •5.1 Протоколы Spanning Tree
- •5.2.1. Понятие петель
- •5.2.2. Построение активной топологии связующего дерева
- •5.2.4 Состояния портов
- •5.2.5 Таймеры stp
- •5.2.6 Изменение топологии
- •5.2.8. Настройка stp
- •5.3.1 Роли портов
- •5.3.2. Формат bpdu
- •5.3.3. Быстрый переход в состояние продвижения
- •5.3.4 Механизм предложений и соглашений
- •5.3.5 Новый механизм изменения топологии
- •1. Определение изменений топологии.
- •2. Распространение информации об изменении топологии.
- •5.3.6 Стоимость пути rstp
- •5.3.7. Совместимость с stp
- •5.3.8. Настройка rstp
- •5.4.1 Логическая структура mstp
- •5.4.3. Формат mstp bpdu
- •5.4.4 Вычисления в mstp
- •5.4.5 Роли портов mstp
- •5.4.6 Пример топологии mstp
- •5.4.7 Состояние портов mstp
- •5.4.8 Счетчик переходов mstp
- •5.4.9 Совместимость с stp и rstp
- •5.4.10 Настройка протокола mstp на коммутаторах
- •5.5 Дополнительные функции защиты от петель
- •5.5.1 Настройка функции LoopBack Detection
- •5.6 Функции безопасности stp
- •5.7 Агрегирование каналов связи
- •5.7.1 Настройка статических и динамических агрегированных каналов
- •Глава 6. Качество обслуживания (QoS)
- •6.1. Модели QoS
- •6.2. Приоритезация пакетов
- •6.3. Классификация пакетов
- •4 Очереди приоритетов
- •8 Очередей приоритетов
- •6.4. Маркировка пакетов
- •6.5. Управление перегрузками и механизмы обслуживания очередей
- •6.6. Механизм предотвращения перегрузок
- •6.7 Контроль полосы пропускания
- •6.8 Пример настройки QoS
- •Глава 7. Функции обеспечения безопасности и ограничения доступа к сети
- •7.1 Списки управления доступом (acl)
- •7.1.1 Профили доступа и правила acl
- •7.1.2 Примеры настройки acl
- •7.2 Функции контроля над подключением узлов к портам коммутатора
- •7.2.1 Функция Port Security
- •7.2.1.1 Пример настройки функции Port Security
- •7.2.2 Функция ip-mac-Port Binding
- •7.2.2.1 Пример настройки функции ip-mac-Port Binding
- •7.3 Аутентификация пользователей 802.1x
- •7.3.1 Роли устройств в стандарте 802.1х
- •7.3.4. Состояние портов коммутатора
- •7.4.1. Пример настройки 802.1х Guest vlan
- •7.5 Функции защиты цпу коммутатора
- •7.5.1 Функция Safeguard Engine
- •7.5.1.1 Пример настройки функции Safeguard Engine
- •7.6.1 Функция cpu Interface Filtering
- •7.6.1.1 Пример настройки функции cpu Interface Filtering
- •Глава 8. Многоадресная рассылка
- •8.1 Адресация многоадресной ip-рассылки
- •8.3 Подписка и обслуживание групп
- •8.4 Управление многоадресной рассылкой на 2-м уровне модели osi (igmp Snooping)
- •8.4.1 Пример настройки igmp Snooping
- •8.5 Функция igmp Snooping Fast Leave
- •8.5.1. Пример настройки igmp Snooping Fast Leave
- •Глава 9. Функции управления коммутаторами
- •9.1 Управление множеством коммутаторов
- •9.1.1. Объединение коммутаторов в физический стек
- •9.1.2 Виртуальный стек. Технология Single ip Management (sim)
- •9.2 Протокол snmp
- •9.2.1 Компоненты snmp
- •9.2.2 База управляющей информации snmp
- •9.2.3 Типы сообщений протокола snmp
- •9.2.4 Безопасность snmp
- •9.2.5 Пример настройки протокола snmp
- •9.4 Функция Port Mirroring
- •Глава 10. Обзор коммутаторов d-Link
- •10.1 Неуправляемые коммутаторы
- •10.2 Коммутаторы серии Smart
- •10.3 Управляемые коммутаторы
6.4. Маркировка пакетов
После процесса классификации коммутатор может осуществить маркировку пакетов (packet marking). Маркировка пакетов определяет способ записи/перезаписи значений битов приоритета (DSCP, 802.1p или IP Precedence) входящих пакетов данных. Обычно процесс маркировки выполняется на граничных устройствах и позволяет последующим коммутаторам/маршрутизаторам использовать новое значение приоритета пакета данных для отнесения его к одному из поддерживаемых в сети классов обслуживания. Изменить значения битов приоритета в заголовках входящих пакетов данных можно с помощью списков управления доступом.
Рис. 6.3. Маркировка пакетов
6.5. Управление перегрузками и механизмы обслуживания очередей
Наиболее часто перегрузка сети возникает в местах соединения коммутаторами сетей с разной полосой пропускания. В случае возникновения перегрузки сети пакеты начинают буферизироваться и распределяться по очередям. Порядок передачи через выходной интерфейс поставленных в очередь пакетов данных на основе их приоритетов определяется механизмом обслуживания очередей(Queuing mechanism ), который позволяет управлять пропускной способностью сети при возникновении перегрузок.
Рис.
6.4. Возникновение перегрузки в сети
Механизм управления перегрузками (Congestion management ) включает следующие механизмы обслуживания очередей:
- механизм FIFO (First-In, First-Out);
- очереди приоритетов (Priority Queuing);
- взвешенный алгоритм кругового обслуживания (Weighted Round Robin , WRR);
- настраиваемые очереди (Custom Queuing).
В коммутаторах D-Link для обслуживания очередей используются взвешенный алгоритм кругового обслуживания, очереди приоритетов и комбинации этих методов.
Механизм обслуживания очередей FIFO («первым пришел, первым ушел»)передает пакеты, поставленные в очередь в том порядке, в котором они поступили в нее. Этот механизм не обеспечивает классификации пакетов и рассматривает их как принадлежащие одному классу.
Рис.
6.5. Очередь FIFO
Очереди приоритетов со строгим режимом ( Strict Priority Queue ) предполагают передачу трафика строго в соответствии с приоритетом выходных очередей. В этом механизме предусмотрено наличие 4-х очередей – с высоким, средним, обычным и низким приоритетами обслуживания. Пакеты,находящиеся в очереди с высоким приоритетом, обрабатываются первыми. Пакеты из следующей по приоритету обслуживания очереди начнут передаваться только после того, как опустеет высокоприоритетная очередь. Например, пакеты из средней по приоритету очереди не будут передаваться до тех пор, пока не будут обслужены пакеты из высокоприоритетной очереди. Пакеты из очереди с нормальным приоритетом не начнут передаваться до тех пор, пока не опустеет очередь со средним приоритетом и т.д.
Следует отметить, что пакеты очереди с высоким приоритетом всегда получают предпочтение при обслуживании независимо от количества пакетов в других очередях и времени, прошедшего с момента передачи последнего пакета из очереди с низким приоритетом. В некоторых случаях это может привести к «зависанию» обслуживания низкоприоритетного трафика, т.е.пакеты из очередей с низким приоритетом будут долго не обрабатываться.
По умолчанию на коммутаторах D-Link настроены очереди приоритетов со строгим режимом.
Рис.
6.6. Очереди приоритетов со строгим
режимом
Еще одним механизмом обслуживания очередей является взвешенный алгоритм кругового обслуживания (Weighted Round Robin , WRR). Этот механизм исключает главный недостаток очередей приоритетов, обеспечивая обработку очередей в соответствии с назначенным им весом и предоставляя полосу пропускания для пакетов из низкоприоритетных очередей.
Рис.
6.7. Обслуживание очередей с использованием
алгоритма WRR
Процесс обработки очередей осуществляется по круговому принципу, начиная с самой приоритетной очереди. Из каждой непустой очереди передается некоторый объем трафика, пропорциональный назначенному ей весу, после чего выполняется переход к следующей по убыванию приоритета очереди и т.д. по кругу.